Kaimosi Friends University Repository

Comparison of band-fitting and Wannier-based model construction for WSe2

Show simple item record

dc.contributor.author Sifuna, James
dc.contributor.author Garc´ıa-Ferna´ndez, Pablo
dc.contributor.author Manyali, George S.
dc.contributor.author Amolo, George
dc.contributor.author Junquera, Javier
dc.date.accessioned 2020-01-22T06:10:18Z
dc.date.available 2020-01-22T06:10:18Z
dc.date.issued 2020-01-17
dc.identifier.citation 1 Gui-Bin Liu, Wen-Yu Shan, Yugui Yao, Wang Yao & Di Xiao, Phys. Rev. B 88, 085433 (2013). 2 Jason S. Ross, Sanfeng Wu, Hongyi Yu, Nirmal J. Ghimire, Aaron M. Jones, Grant Aivazian, Jiaqiang Yan, David G. Mandrus, Di Xiao, Wang Yao & Xiaodong Xu, Nat Commun 4, 1474 (2013). 3 Sefaattin Tongay, Jian ZhouCan Ataca, Kelvin Lo, Tyler S. Matthews, Jingbo Li, Jeffrey C. Grossman, Junqiao Wu, Nano Lett., 12, 11, 5576-5580 (2012). 4 Hualing Zeng, Gui-Bin Liu, Junfeng Dai, Yajun Yan, Bairen Zhu, Ruicong He, Lu Xie, Shijie Xu, Xianhui Chen, Wang Yao & Xiaodong Cui, Scientific Reports 3, 1608 (2010). 5 Ming-Wei Lin, Lezhang Liu, Qing Lan, Xuebin Tan, Kulwinder S Dhindsa, Peng Zeng, Vaman M Naik, Mark Ming-Cheng Cheng & Zhixian Zhou, J. Phys. D: Appl. Phys. 45 345102 (2012). 6 Wenzhong Bao, Xinghan Cai, Dohun Kim, Karthik Sridhara & Michael S. Fuhrer, Appl. Phys. Lett. 102, 042104 (2013). 7 Stefano Larentis, Babak Fallahazad & Emanuel Tutuc, Appl. Phys. Lett. 101, 223104 (2012). 8 Xin Luo, Yanyuan Zhao, Jun Zhang, Minglin Toh, Christian Kloc, Qihua Xiong & Su Ying Quek, Phys. Rev. B, 88, 195313 (2013). 9 Rafael de Alencar Rocha, Wiliam Ferreira da Cunha & Luiz Antonio Ribeiro Jr., J. Mol. Modeling 25, 290 (2019). 10 Feliciano Giustino, Rev. Mod. Phys. 89, 015003 (2017). 11 J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954). 12 Ian David Brown, Chem. 109, 12, 6858-6919 (2009). 13 T. J. Giese and D. M. York, Theor Chem Acc. 131, 1145. (2012). 14 J. Spaek, Phys. Rev. B 37, 533 (1988). 15 W. Zhong, David Vanderbilt, and K. M. Rabe, Phys. Rev. B 52, 6301 (1995). 16 Pablo Garc´ıa-Ferna´ndez, Jacek C. Wojde, Jorge ´Iiguez, and Javier Junquera, Phys. Rev. B 93, 195137 (2016). 17 Jacek C Wojde, Patrick Hermet, Mathias P Ljungberg, Philippe Ghosez and Jorge iguez, J. Phys.: Condens. Matter 25 305401 (2013). 18 A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun. 178, 685 (2008). 19 Jos´e M. Soler, Emilio Artacho, Julian D. Gale, Alberto Garcia, Javier Junquera, Pablo Ordejon, Daniel SanchezPortal, J. Phys.: Condens. Matter 14 2745 (2002). 20 Nicola Marzari, Arash A. Mostofi, Jonathan R. Yates, Ivo Souza, and David Vanderbilt, 7 Rev. Mod. Phys. 84, 1419 (2012). 21 John P. Perdew, Kieron Burke, and Matthias Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997). 22 Leonard Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982). 23 N. Troullier and Jos Lus Martins, Phys. Rev. B 43, 1993 (1991). 24 Javier Junquera, ´Oscar Paz, Daniel S´anchez-Portal, and Emilio Artacho, Phys. Rev. B 64, 235111 (2001). 25 Hendrik J. Monkhorst and James D. Pack, Phys. Rev. B 13, 5188 (1976). 26 Juana Moreno and Jos´e M. Soler, Phys. Rev. B 45, 13891 (1992). 27 SCALE-UP webpage https://www.secondprinciples.unican.es/. 28 Swastibrata Bhattacharyya and Abhishek K. Singh, Phys. Rev. B 86, 075454 (2012). en_US
dc.identifier.uri http://erepository.kafuco.ac.ke/123456789/67
dc.description.abstract Transition metal dichalcogenide materials MX2(M = Mo, W;X = S,Se) are being thoroughly studied due to their novel two-dimensional structure, that is associated with exceptional optical and transport properties. From a computational point of view, Density Functional Theory simulations perform very well in these systems and are an indispensable tool to predict and complement experimental results. However, this technique has a significant restriction since it can only be applied at zero temperature and, given that it can only deal with a relatively small number of atoms, its ability to treat, for example, electron-lattice coupling when studying excitation states is limited. Multi-scale techniques, like the recently proposed Second Principles Density Functional Theory, can go beyond these limitations but require the construction of tight-binding models for the systems under investigation. In this work, we compare two such methods to construct the bands of WSe2. In particular, we compare the result of (i) Wannier-based model construction with (ii) the band fitting method of Liu et al.,1 where the top of the valence band and the bottom of the conduction band are modeled by three bands symmetrized to have mainly Tungsten dz2, dxy and dx2−y2 character. Our results emphasize the differences between these two approaches and how band-fitting model construction leads to an overestimation of the localization of the real-space basis in a tight-binding representation. en_US
dc.language.iso en en_US
dc.subject WSe2, first-principles DFT, second-principles DFT. en_US
dc.title Comparison of band-fitting and Wannier-based model construction for WSe2 en_US
dc.type Preprint en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Erepository


Browse

My Account