Kaimosi Friends University Repository

Insights on adsorption of carbamazepine onto iron oxide modified diatomaceous earth: Kinetics, isotherms, thermodynamics, and mechanisms

Show simple item record

dc.contributor.author Kimosop, Selly Jemutai
dc.contributor.author Orata, Francis
dc.contributor.author Shikuku, Victor O.
dc.contributor.author Okello, Veronica A.
dc.contributor.author Getenga, Zachary M.
dc.date.accessioned 2020-01-21T06:47:19Z
dc.date.available 2020-01-21T06:47:19Z
dc.date.issued 2020
dc.identifier.citation Al-Hamadani, Y.A.J., Park, C.M., Assi, L.N., Chu, K.H., Hoque, S., Jang, M., Yoon, Y., Ziehl, P., 2017. Sonocatalytic removal of ibuprofen and sulfamethoxazole in the presence of different fly ash sources. Ultrason. Sonochem. 39, 354–362. Azuma, T., Kana, O., Shiori, M., Mao, I., Kanae, H., Ayami, Y., Yoshiki, M., Tetsuya, H., 2019. Environmental fate of pharmaceutical compounds and antimicrobial-resistant bacteria in hospital effluents, and contributions to pollutant loads in the surface waters in Japan. Sci. Total Environ. 657, 476–484. https://doi.org/10.1016/j. scitotenv.2018.11.433. Baghdadi, M., Ghaffari, E., Aminzadeh, B., 2016. Removal of carbamazepine from municipal wastewater effluent using optimally synthesized magnetic activated carbon: adsorption and sedimentation kinetic studies. J. Environ. Chem. Eng. 4 (3), 3309–3321. Bhadra, B.N., Jhung, S.H., 2017. A remarkable adsorbent for removal of contaminants of emerging concern from water: porous carbon derived from metal azolate framework6. J. Hazard Mater. 340, 179–188. Borisova, D.A., Vedenyapina, M.D., Strel’tsova, E.D., Maslov, V.L., Rosenwinkel, K.H., Weichgrebe, D., Stopp, P., Vedenyapin, A.A., 2013. Adsorption of carbamazepine from aqueous solutions on expanded graphite. Solid Fuel Chem. 47, 298. https://doi. org/10.3103/S0361521913050030. Boyd, G.R., Reemtsma, H., Grimm, D.A., Mitra, S., 2003. Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario. Canada. Sci. Total Environ. 311, 135–149. Bui, T.X., Kang, S.Y., Lee, S.H., Choi, H., 2011. Organically functionalized mesoporous SBA-15 as sorbents for removal of selected pharmaceuticals from water. J. Hazard Mater. 193, 156–163. Chen, J., Zhang, D., Zhang, H., Ghosh, S., Pan, B., 2016. Fast and slow adsorption of carbamazepine on biochar as affected by carbon structure and mineral composition. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2016.11.052. Davarnejad, R., Soofi, B., Farghadani, F., Behfar, R., 2018. Ibuprofen removal from a medicinal effluent: a review on the various techniques for medicinal effluents treatment. Environ. Technol. Innov. 11, 308–320. Deng, Y., Ok, Y., Mohan, D., Pittman, C., Dou, X., 2019. Carbamazepine removal from water by carbon dot-modified carbon nanotubes. Environ. Res. 169, 434–444. Fields, S., Korunic, Z., McLaughlin, A., Stathers, T., 2003. Standardized testing for diatomaceous earth. In: Proceedings of the 8th International Conference on StoredProduct Protection, pp. 779–784. Freundlich, H.M.F., 1906. Ü ber die adsorption in lösungen. Z. Phys. Chem. 57, 385–470. Fujiwara, M., Shiokawa, K., Sakakura, I., Nakahara, Y., 2006. Silica hollow spheres with nano-macroholes like diatomaceous earth. Chemosphere 33, 3–6. Gao, Y., Liu, K., Kang, R., Xia, J., Yu, G., Deng, S., 2018. A comparative study of rigid and flexible MOFs for the adsorption of pharmaceuticals: kinetics, isotherms and mechanisms. J. Hazard Mater. 359, 248–257. Giles, C., D'Silva, A.P., Easton, I.A., 1974. A general treatment and classification of the solute adsorption isotherm. I. Theor. J. Colloid Interface Sci. 47, 766. Hall, K.R., Eagleton, L.C., Acrivos, A., Vermeulen, T., 1966. Pore and solid-diffusion kinetics in fixed–bed adsorption under constant–pattern conditions. Ind. Eng. Chem. Fundam. 5, 212–223. Hamadneh, I., Alatawi, A., Zalloum, R., Albuqain, R., Alsotari, S., Khalili, F.I., Al-Dujaili, A.H., 2019. Comparison of Jordanian and standard diatomaceous earth as an adsorbent for removal of Sm(III) and Nd(III) from aqueous solution. Environ. Sci. Pollut. Res. 26, 20969–20980. Heo, J., Boateng, L.K., Flora, J.R.V., Lee, H., Her, N., Park, Y.G., Yoon, Y., 2013. Comparison of flux behavior and synthetic organic compound removal by forward osmosis and reverse osmosis membranes. J. Membr. Sci. 443, 69–82. Heo, J., Flora, J.R.V., Her, N., Park, Y.G., Cho, J., Son, A., Yoon, Y., 2012. Removal of bisphenol A and 17 b-estradiol in single walled carbon nanotubes-ultrafiltration (SWNTs-UF) membrane systems. Separ. Purif. Technol. 90, 39–52. Ho, Y.S., 2006. Review of second-order models for adsorption systems. J. Hazard Mater. Table 8 Comparison of Fe-DE performance with other adsorbents. Adsorbent Adsorption capacity (mg g−1 ) Contact time % Removal Reference Magnetite-modified magnetic carbon nanotubes 0.065 3 h 80 Deng et al. (2019) Hematite nanoparticles 2.890 2.5 h 55 Rajendran and Sen, 2018 Pinewood derived nanobiochar 0.116 3 h 70–99 Naghdi et al. (2017) Magnetic activated carbon 182.9 – 93 Baghdadi et al. (2016) Magnetic bagasse derived biochar – 4 h 60.9 Kimosop et al. (2017) Nucifera extract-coated magnetic nanoparticle 0.715 3 h 51.4 Misra et al. (2018) Expanded graphite 43.54 1.5 h 70 Borisova et al. (2013) Fe-DE – 2 h 88.2 This study S. Jemutai-Kimosop, et al. Environmental Research 180 (2020) 108898 9 136, 681–689. Ho, Y.S., McKay, G., 1998. Sorption of dye from aqueous solution by peat. Chem. Eng. J. 70, 115–124. Hosseinzadeh, H., Mohammadi, S., 2015. Quince seed mucilage magnetic nanocomposites as novel bioadsorbents for efficient removal of cationic dyes from aqueous solutions. Carbohydr. Polym. 134, 213–221. Hu, X., Ding, Z., Zimmerman, A.R., Wang, S., Gao, B., 2014. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res. 68, 206–216. Jauris, I.M., Matos, C.F., Saucier, C., Lima, E.C., Zarbin, A.J.G., Fagan, S.B., Machado, F.M., Zanella, I., 2016. Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study. Phys. Chem. Chem. Phys. 18, 1526–1536. Jelic, A., Gros, M., Ginebreda, A., Cespedes-Sánchez, R., Ventura, F., Petrovic, M., Barceló, D., 2011. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res. 45, 1165–1176. Jiang, M., Yang, W., Zhang, Z., Yang, Z., Wang, Y., 2015. Adsorption of three pharmaceuticals on two magnetic ion-exchange resins. J. Environ. Sci. Technol. 31, 226–234. Joss, A., Zabczynski, S., G€obel, A., Hoffmann, B., L€offler, D., McArdell, C.S., Ternes, T.A., Thomsen, A., Siegrist, H., 2006. Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res. 40, 1686–1696. Jun, B.M., Kim, S., Heo, J., Her, N., Jang, M., Park, C.M., Yoon, Y., 2019. Enhanced sonocatalytic degradation of carbamazepine and salicylic acid using a metal organic framework. Ultrason. Sonochem. 56, 174–182. Jun, B.M., Lee, H.K., Kwon, Y.N., 2018. Acid-catalyzed hydrolysis of semi-aromatic polyamide NF membrane and its application to water softening and antibiotics enrichment. Chem. Eng. J. 332, 419–430. Kiecak, A., Lara, S., Mercè, B., Elsner, M., Mas-Pla, J., Salle, C., Stumpp, C., 2019. Sorption properties and behaviour at laboratory scale of selected pharmaceuticals using batch experiments. J. Contam. Hydrol. 225, 103500. Kimosop, S.J., Getenga, Z.M., Orata, F.O., Okello, V.A., Cheruiyot, J.K., 2016. Residue levels and discharge loads of antibiotics in wastewater treatment plants and hospital lagoons within Lake Victoria Basin, Kenya. J. Environ. Monit. Assess. 188, 532. https://doi.org/10.1007/s10661-016-5534-6. Kimosop, S.J., Okello, V.O., Orata, F., Getenga, Z.M., Shikuku, V.O., 2017. Green Remediation of carbamazepine from water using iron modified carbonized bagasse: kinetics, equilibrium and mechanistic studies. Chem. Sci. Inter. J. 18 (3), 1–9. Knoerr, R., Brendlé, J., Lebeau, B., Demais, H., 2013. Microporous and Mesoporous Materials Preparation of ferric oxide modified diatomite and its application in the remediation of as (III) species from solution. Microporous Mesoporous Mater. 169, 185–191. https://doi.org/10.1016/j.micromeso.2012.09.036. Kosjek, T., Andersen, H.R., Kompare, B., Ledin, A., 2009. Fate of carbamazepine during water treatment. Environ. Sci. Technol. 43, 6256–6261. Langmuir, I., 1916. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 38, 2221–2295. Mahramanlioglu, M., Onnar, O.O., 2013. Adsorption of carbamazepine on the adsorbent produced from spent bleaching earth. Asian J. Chem. 25, 1033–1035. Misra, T., Mitra, S., Sen, S., 2018. Adsorption studies of carbamazepine by green-synthesized magnetic nanosorbents. Nanotechnol. Environ. Eng. 3. https://doi.org/10. 1007/s41204-018-0040-4. Mohamed, E.A., Selim, A.Q., Zayed, A.M., Komarneni, S., Mobarak, M., Seliem, M.K., 2019. Enhancing adsorption capacity of Egyptian diatomaceous earth by thermochemical purification: methylene blue uptake. J. Colloid Interface Sci. 534, 408–419. Naghdi, M., Taheran, M., Pulicharla, R., Rouissi, T., Brar, S., Verma, M., Surampalli, R.Y., 2017. Pine-wood derived nanobiochar for removal of carbamazepine from aqueous media: adsorption behavior and influential parameters. Arab. J. Chem. 9. https://doi. org/10.1016/j.arabjc.2016.12.025. Nam, S.W., Choi, D.J., Kim, S.K., Her, N., Zoh, K.D., 2014. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon. J. Hazard Mater. 270, 144–152. Namduri, H., Nasrazadani, S., 2008. Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corros. Sci. 50, 2493–2497. Ng’eno, E., Shikuku, V.O., Orata, F., Lilechi, D.B., Kimosop, S., 2019. Caffeine and Ciprofloxacin Adsorption from water onto clinoptilolite: linear isotherms, kinetics, thermodynamics and mechanistic studies. S. Afr. J. Chem. 72, 136–142. Oetken, M., Nentwig, G., Loffler, D., Ternes, T., Oehlmann, J., 2005. Effects of pharmaceuticals on aquatic invertebrates. Part I. The antiepileptic drug carbamazepine. Arch. Environ. Contam. Toxicol. 49, 353–361. Punyapalakul, P., Sitthisorn, T., 2010. Removal of ciprofloxazin and carbamazepine by adsorption on functionalized mesoporous silicates. World Academy Sci. Eng. Technol. 69, 546–550. Rajendran, K., Sen, S., 2018. Adsorptive removal of carbamazepine using biosynthesized hematite nanoparticles. Environ. Nanotechnol. Monit. Manag. 122–127. Saleh, T.A., 2015. Isotherm, kinetic, and thermodynamics studies on Hg(II) adsorption from aqueous solution by silica-multiwall carbon nanotubes. Environ. Sci. Pollut. Res. 22, 16721–16731. Schaider, L.A., Ruthann, A.R., Ackerman, J.M., Dunagan, S.C., Brody, J.G., 2014. Pharmaceuticals, perfluorosurfactants and other organic wastewater compounds in public drinking water wells in a shallow sand and gravel aquifer. Sci. Total Environ. 468–469, 384–393. Shikuku, V.O., Donato, F.F., Kowenje, C.O., Zanella, R., Prestes, O.D., 2015. A comparison of adsorption equilibrium, kinetics and thermodynamics of aqueous phase clomazone between Faujasite X and a Natural zeolite from Kenya. S. Afr. J. Chem. 68, 245–252. Shikuku, V.O., Kowenje, C.O., Kengara, F., 2018b. Errors in parameters estimation using linearized adsorption isotherms: sulfadimethoxine adsorption onto kaolinite clay. Chem. Sci. Inter. J. 23 (4), 1–6. Shikuku, V.O., Zanella, R., Kowenje, C.O., Donato, Filipe F., Bandeira, Nelson, Prestes, O.D., 2018a. Single and Binary Adsorption of sulphonamide antibiotics onto ironmodified clay: linear and nonlinear Isotherms, Kinetics, thermodynamics and mechanistic studies. Appl. Water Sci. 8, 175. https://doi.org/10.1007/s13201-018- 0825-4. Sosa, G., Morantes, C., Flores, F., Sánchez, R., Zalts, A., Ramirez, S., 2019. Characterization of diatomaceous earth modified by organic ligands for enhanced zinc adsorption. J. Environ. Chem. Eng. 7, 103197. https://doi.org/10.1016/j.jece. 2019.103197. Thacker, P.D., 2005. Pharmaceutical data elude researchers. Environ. Sci. Technol. 39, 193–194. To, M., Hadi, P., Hui, C., Lin, C., McKay, G., 2017. Mechanistic study of atenolol, acebutolol and carbamazepine adsorption on waste biomass derived activated carbon. J. Mol. Liq. 241, 386–398. Treybal, R.E., 1981. Mass-transfer Operations, 3rd ed., McGraw-Hill. using tree fern as a biosorbent. Process Biochem. 40 (1), 119–124. Tsai, W., Lai, C., Ting-Yi, S., 2006. Adsorption of bisphenol-A from aqueous solution onto minerals and carbon adsorbents. J. Hazard Mater. 134, 169–175. Volesky, B., 2007. Biosorption and me. Water Res. 41, 4017–4029. Yu, W., Deng, L., Yuan, P., Liu, D., Yuan, W., 2015. Preparation of hierarchically porous diatomite/MFI-type zeolite composites and their performance for benzene adsorption : the effects of desilication. Chem. Eng. J. https://doi.org/10.1016/j.cej.2015.02. 065. Yuan, P., Liu, D., Tan, D., Liu, K., Yu, H., Zhong, Y., 2013. Microporous and Mesoporous Materials Surface silylation of mesoporous/macroporous diatomite (diatomaceous earth) and its function in Cu(II) adsorption : the effects of heating pretreatment. Microporous Mesoporous Mater. 170, 9–19. https://doi.org/10.1016/j.micromeso. 2012.11.030. Zhang, M., Gao, B., Varnoosfaderani, S., Hebard, A., Yao, Y., Inyang, M., 2013. Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour. Technol. 130, 457–462. https://doi.org/10.1016/j.biortech.2012.11.132. Zhang, Y., Geißen, S.U., Gal, C., 2008. Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73 (8), 1151–1161. Zhao, Q., Zhang, S., Zhang, X., Lei, L., Ma, W., Ma, C., Song, L., Chen, J., Pan, B., Xing, B., 2017. Cation-Pi interaction: a key force for sorption of fluoroquinolone antibiotics on pyrogenic carbonaceous materials. Environ. Sci. Technol. 51, 13659–13667. Zheng, L., Yang, Y., Meng, P., Peng, D., 2019. Absorption of cadmium (II) via sulfurchelating based cellulose: Characterization, isotherm models and their error analysis. Carbohydr. Polymers 209, 38–50. en_US
dc.identifier.uri http://erepository.kafuco.ac.ke/123456789/54
dc.description.abstract To ameliorate adsorbent recovery by an external magnetic field, naturally occurring diatomaceous earth (DE) was modified with iron-oxide, characterized and applied for adsorption of carbamazepine (CBZ) from synthetic wastewater using batch equilibration method. The fabricated adsorbent was characterized using XRF, XRD, SEMEDX, FT-IR, BET surface area analysis, VSM and pH of point of zero charge (pHpzc) determination. The adsorption rate was described by the pseudo-first-order (PFO) model suggesting a physisorption controlled ratedetermining step. Equilibrium adsorption data were fitted to linear and nonlinear isotherm models, viz Langmuir and Freundlich models, and were best described by Freundlich nonlinear equations implying heterogeneous multilayer adsorption. The best-fitting kinetic and isotherm model was determined using four mathematical error functions. The thermodynamic parameters, namely enthalpy (ΔH = −26.4 kJ mol−1), Gibbs free energy(ΔG = −2.22 kJ mol−1 at 298 K), entropy (ΔS = −34.0 kJ mol−1), indicated that the adsorption was a spontaneous, exothermic, and physical process. The adsorption mechanism is postulated to involve cation-π interactions. Modified diatomaceous earth is a potentially excellent, low-cost, and novel sorbent for CBZ adsorption with 88% removal in 180 min and provides a possible alternative adsorbent for wastewater treatment. en_US
dc.language.iso en en_US
dc.publisher Environmental Research en_US
dc.subject Diatomaceous earth, Carbamazepine, Adsorption, Non-linear regression en_US
dc.title Insights on adsorption of carbamazepine onto iron oxide modified diatomaceous earth: Kinetics, isotherms, thermodynamics, and mechanisms en_US
dc.type Preprint en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Erepository


Browse

My Account