dc.identifier.citation |
[1]Brauer F, Chaves CC. Mathematical models in population biology and epidemiology. SecondEdition, Springer, New York; 2001.[2]Murray JD. Mathematical biology: I. an introduction. third Edition. Springer Verlag, Berlin;2002.[3]Chen Y, Zhang F. Dynamics of a delayed predator-prey model with predator migration. AppliedMathematical Modelling. 2013;37:1400-1412.[4]Rosenzweig M, MacArthur R. Graphical representation and stability conditions of predator-prey interaction. American Naturalist. 1963;97:209-223.[5]Abadi, Dian S, Choirotul U. Stability analysis of Lotka-Volterra model with Holling type IIfunctional response. Scienti c Research Journal. 2013;I(V):22-26.[6]Li B, Liu S, Cui J, Li J. A simple predator-prey population model with rich dynamics. Appl.Sci. 2016;6:151.[7]Feng W, Rock B, Hinson J. On a new model of two-patch predator-prey system with migrationof both species. Journal of Applied Analysis and Computation. 2011;1(2):193203.[8]Caate-Gonzalez E, Fong-Silva W, Severiche-Sierra C, Marrugo-Ligardo Y, Jaimes-Morales J.Rosenzweig-MacArthur model considering the function that protects a xed amount of preyfor population dynamics. Contemporary Engineering Sciences. 2018;11(24):1195-1205.[9]Suebcharoen T. Analysis of a predator-prey model with switching and stage-structure forpredator. International Journal of Di erential Equations. 2017;2653124.[10]Hastings A. Population Biology, concepts and models. Springer, New York; 1998.[11]Sun G, Mai A. Stability analysis of a two-patch predator-prey model with two dispersal delays.Advances in Di erence Equations, Springer Open Journal. 2018;218:373.[12]Liu P. An analysis of a predator-prey model with both di usion and migration. Mathematicaland Computer Modelling. 2010;51:1064-1070.[13]Tahara T, Gavina M, Kawano T, Tubay J, Rabajante J, Ito H, Morita S, Ichinose G, OkabeT, Togashi T, Tainaka K, Shimizu A, Nagatani T, Yoshimura J. Asymptotic stability of amodi ed Lotka-Volterra model with small immigrations. Scienti c Reports. 2018;8:7029.[14]Wasike AM, Bong'ang'a AS, Lawi GO, Nyukuri MO. A predator-prey model with a time lagin the migration. Applied Mathematical Science. 2014;8-75:3721-3732.[15]Samuel AB, George LO, Kagendo NJ. Rosenzweig-Macaurther model with holling type IIpredator functional response for constant delayed migration. Asian Research Journal ofMathematics. 2019;15(1):1-14.11 Apima et al.; ARJOM, 15(3): 1-12, 2019; Article no.ARJOM.52182[16]Mabwago A, George L, Samuel A, Otieno J. Modelling delay in migration for constant predatorand predator-density-dependent prey migration. Journal of Advances in Mathematics andComputer Science. 2019;33(6):1-11.[17]Abdllaoui AE, Auger PM, Kooi BW, Parra RB, Mchich R. E ects of density - dependentmigrations on stability of a two-patch predator-prey model. Mathematical Bioscience.2007;210:335-354.[18]Arino O, Hbid ML, Dads EA. Delay di erential equations with applications. Springer,Dordrecht; 2006.[19]Mchich R, Auger PM, Poggiale JC. E ect of predator density dependent dispersal of prey onstability of a predator-prey system. Mathematical Biosciences. 2007;206:343-356.[20]Neubert MG, Klepac P, Van Den Driessche P. Stabilizing dispersal delays in predator-preymeta-population models. Theoretical-Population Biology. 2002;61:339-347.[21]Hale JK, Lunel SV. Introduction to functional di erential equations. Springer-Verlag, NewYork; 1993.[22]Huang Y. Predator migration in response to prey density. What are the consequences?. J.Math. Biol. 2001;43:561-581.[23]Diekmann O, van Gils SA, Lunel SMV, Walther H. Delay equations: Functional, complex andnonlinear analysis. Springer-Verlag, New York Berlin Heidelberg; 1995 |
en_US |