Kaimosi Friends University Repository

Adsorption of heavy metals onto food wastes: a review

Show simple item record

dc.contributor.author Nyairo, Wilfrida
dc.contributor.author Njewa, Joel B.
dc.contributor.author Shikuku, Victor O.
dc.date.accessioned 2025-07-07T08:39:17Z
dc.date.available 2025-07-07T08:39:17Z
dc.date.issued 2025
dc.identifier.citation Abdel-Mohdy, F., EL-Sawy, S., and Ibrahim, M. (2005). Heavy metal removal by chitosan and chitosan composite. Aderonke, A. O., Abimbola, B. A., Ifeanyi, E., Omotayo, S. A., Oluwagbemiga, S. A., and Oladotun, W. M. (2014). Adsorption of heavy metal ions onto chitosan grafted cocoa husk char. Afr. J. Pure Appl. Chem. 8 (10), 147–161. doi:10.5897/AJPAC2014. 0591 Ahalya, N., Kanamadi, R. D., and Ramachandra, T. V. (2010). Removal of hexavalent chromium using coffee husk. Int. J. Environ. Pollut. 43 (1/2/3), 106. doi:10.1504/IJEP. 2010.035917 Alhogbi, B. G. (2023). Applicability of natural coffee husk as a mesoporous adsorbent for removal of chromium (VI) from aquatic environments. Mod. Appl. Sci. 17 (2), 37. doi:10.5539/mas.v17n2p37 Alhogbi, B. G., and Al-Enazi, Z. F. (2018). Retention profile of Zn2+ and Ni2+ ions from wastewater onto coffee husk: kinetics and thermodynamic study. J. Encapsulation Adsorpt. Sci. 08 (01), 1–17. doi:10.4236/jeas.2018.81001 Amicarelli, V., Lagioia, G., and Bux, C. (2021). Global warming potential of food waste through the life cycle assessment: an analytical review. Environ. Impact Assess. Rev. 91, 106677. doi:10.1016/j.eiar.2021.106677 Amicarelli, V., and Bux, C. (2021). Food waste measurement toward a fair, healthy and environmental-friendly food system: a critical review. Br. Food J. 123, 2907–2935. doi:10.1108/bfj-07-2020-0658 Aragaw, T., Leta, S., Alayu, E., and Mekonnen, A. (2022). Chromium removal from electroplating wastewater using activated coffee husk carbon. Adsorpt. Sci. and Technol. 2022, 7646593. doi:10.1155/2022/7646593 Aydın, Y. A., and Aksoy, N. D. (2009). Adsorption of chromium on chitosan: optimization, kinetics and thermodynamics. Chem. Eng. J. 151 (1–3), 188–194. doi:10.1016/j.cej.2009.02.010 Aziz, K. H. H., Mustafa, F. S., Omer, K. M., Hama, S., Hamarawf, R. F., and Rahman, K. O. (2023). Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review. RSC Adv. 13, 17595–17610. doi:10.1039/d3ra00723e Bai, L., Liu, L., Esquivel, M., Tardy, B. L., Huan, S., Niu, X., et al. (2022). Nanochitin: chemistry, structure, assembly, and applications. Chem. Rev. 122 (13), 11604–11674. doi:10.1021/acs.chemrev.2c00125 Barrett, E. B., Brown, J. M., and Oleck, S. M. (1951). Some granular carbonaceous adsorbents for sugar refining—a study of bone char replacements based on hydroxyapatite. Industrial and Eng. Chem. 43 (3), 639–654. doi:10.1021/ie50495a026 Basso, M. C., Cerrella, E. G., and Cukierman, A. L. (2002). Lignocellulosic materials as potential biosorbents of trace toxic metals from wastewater. Industrial and Eng. Chem. Res. 41 (15), 3580–3585. doi:10.1021/ie020023h Belete, G. (2017). A review on elimination of heavy metals from wastewater using agricultural wastes as adsorbents. Sci. J. Anal. Chem. 5, 72–75. doi:10.11648/j.sjac. 20170505.12 Benavente, M. (2008). “Adsorption of Metallic ions onto chitosan: Equilibrium and kinetic studies. Kemiteknik, Chemical and Engineering and Technology,” in Kungliga tekniska högskolan. Benguella, B., and Benaissa, H. (2002). Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies. Water Res. 36 (10), 2463–2474. doi:10.1016/ S0043-1354(01)00459-6 Boddu, V. M., Abburi, K., Talbott, J. L., and Smith, E. D. (2003). Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environ. Sci. and Technol. 37 (19), 4449–4456. doi:10.1021/es021013a Chai, W. S., Cheun, J. Y., Kumar, P. S., Mubashir, M., Majeed, Z., Banat, F., et al. (2021). A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod. 296, 126589. doi:10.1016/j.jclepro. 2021.126589 Cheung, C. W., Chan, C. K., Porter, J. F., and McKay, G. (2001). Combined diffusion model for the sorption of cadmium, copper, and zinc ions onto bone char. Environ. Sci. and Technol. 35 (7), 1511–1522. doi:10.1021/es0012725 Cheung, C. W., Porter, J. F., and Mckay, G. (2001). Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Res. 35 (3), 605–612. doi:10.1016/S0043-1354(00)00306-7 Cheung, C. W., Porter, J. F., and Mckay, G. (2002). Removal of Cu(II) and Zn(II) ions by sorption onto bone char using batch agitation. Langmuir 18, 650–656. doi:10.1021/ la010706m Choy, K. K. H., and McKay, G. (2005). Sorption of cadmium, copper, and zinc ions onto bone char using Crank diffusion model. Chemosphere 60 (8), 1141–1150. doi:10. 1016/j.chemosphere.2004.12.041 Coltre, D. S. D. C., Cionek, C. A., Meneguin, J. G., Maeda, C. H., Braga, M. U. C., DE Araújo, A. C., et al. (2020). Study of dye desorption mechanism of bone char utilizing different regenerating agents. SN Appl. Sci. 2, 2150. doi:10.1007/s42452- 020-03911-8 Darmayanti, L., Notodarmodjo, S., Damanhuri, E., and Mukti, R. R. (2018). Removal of copper (II) ions in aqueous solutions by sorption onto alkali activated fly ash. MATEC Web Conf. 147, 04007. doi:10.1051/matecconf/201814704007 Edokpayi, J., Odiyo, J., Popoola, E., Alayande, O., and Msagati, T. (2015). Synthesis and characterization of biopolymeric chitosan derived from land snail shells and its potential for Pb2+ removal from aqueous solution. Materials 8 (12), 8630–8640. doi:10. 3390/ma8125482 Eltaweil, A. S., Omer, A. M., El-Aqapa, H. G., Gaber, N. M., Attia, N. F., El-Subruiti, G. M., et al. (2021). Chitosan based adsorbents for the removal of phosphate and nitrate: a critical review. Carbohydr. Polym. 274, 118671. doi:10.1016/j.carbpol.2021.118671 Fan, Y., Zhai, S., Liu, N., Lv, J., Lei, Z., and An, Q. (2016). Adsorption equilibrium, kinetics and mechanism of Pb(II) over carbon–silica composite biosorbent with designed surface oxygen groups. Res. Chem. Intermed. 42 (2), 869–891. doi:10.1007/s11164-015-2060-z Gerente, C., Lee, V. K. C., Cloirec, P. L., and McKay, G. (2007). Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Crit. Rev. Environ. Sci. Technol. 37 (1), 41–127. doi:10.1080/ 10643380600729089 Girotto, F., Alibardi, L., and Cossu, R. (2015). Food waste generation and industrial uses: a review. Waste Manag. 45, 32–41. doi:10.1016/j.wasman.2015.06.008 Hadi, A. G. (2013). Synthesis of chitosan and its use in metal removal. Chem. Mater. Res. 3. Hegazi, H. A. (2013). Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC J. 9 (3), 276–282. doi:10.1016/j.hbrcj.2013.08.004 Husoon, Z. A., Al-Azzawi, M. N. A., and Al-Hiyaly, S. (2013). Investigation biosorption potential of copper and lead from industrial WasteWater using orange and lemon peels. J. Al-Nahrain Univ. Sci., 16(2), 713–179. doi:10.22401/JNUS.16.2.27 Hyder, A. H. M. G., Begum, S. A., and Egiebor, N. O. (2015). Adsorption isotherm and kinetic studies of hexavalent chromium removal from aqueous solution onto bone char. J. Environ. Chem. Eng. 3 (2), 1329–1336. doi:10.1016/j.jece.2014.12.005 Jean Claude, N., Shanshan, L., Khan, J., Yifeng, W., Dongxu, H., and Xiangru, L. (2022). Waste tea residue adsorption coupled with electrocoagulation for improvement of copper and nickel ions removal from simulated wastewater. Sci. Rep. 12, 3519. doi:10. 1038/s41598-022-07475-y Kaya, K., Pehlivan, E., Schmidt, C., and Bahadir, M. (2014). Use of modified wheat bran for the removal of chromium(VI) from aqueous solutions. Food Chem. 158, 112–117. doi:10.1016/j.foodchem.2014.02.107 Khairkar, S., and Raut, A. (2014). Adsorption studies for the removal heavy metal by chitosan-G-poly acrylicacid-Co-acrylamide composite. Sci. J. Anal. Chem. 2 (6), 67. doi:10.11648/j.sjac.20140206.12 Kim, D., Hwang, S., Kim, Y., Jeong, C. H., Hong, Y. P., and Ryoo, K. S. (2019). Removal of heavy metals from water using chicken egg shell powder as a bio-adsorbent. Bull. Korean Chem. Soc. 40 (12), 1156–1161. doi:10.1002/bkcs.11884 Ko, D. C., Cheung, C. W., Choy, K. K., Porter, J. F., and Mckay, G. (2004). Sorption equilibria of metal ions on bone char. Chemosphere 54, 273–281. doi:10.1016/j. chemosphere.2003.08.004 Kohli, K., Prajapati, R., Shah, R., Das, M., and Sharma, B. K. (2024). Food waste: environmental impact and possible solutions. Sustain. Food Technol. 2, 70–80. Kousalya, G. N., Rajiv Gandhi, M., and Meenakshi, S. (2010). Sorption of chromium(VI) using modified forms of chitosan beads. Int. J. Biol. Macromol. 47 (2), 308–315. doi:10.1016/j.ijbiomac.2010.03.010 Kumar, U., Kumar, B., and Pandey, K. M. (2014). SEM and EDAX study of pretreated rice husk for the sorption of Cu(II) from wastewater. Appl. Mech. Mater. 656, 17–22. doi:10.4028/www.scientific.net/AMM.656.17 Kyzas, G. Z., Kostoglou, M., and Lazaridis, N. K. (2009). Copper and chromium(VI) removal by chitosan derivatives—equilibrium and kinetic studies. Chem. Eng. J. 152 (2–3), 440–448. doi:10.1016/j.cej.2009.05.005 Lu, Y., Song, S., Wang, R., Liu, Z., Meng, J., Sweetman, A. J., et al. (2015). Impacts of soil and water pollution on food safety and health risks in China. Environ. Int. 77, 5–15. doi:10.1016/j.envint.2014.12.010 Luo, X., Deng, Z., Lin, X., and Zhang, C. (2011). Fixed-bed column study for Cu2+ removal from solution using expanding rice husk. J. Hazard. Mater. 187 (1–3), 182–189. doi:10.1016/j.jhazmat.2011.01.019 Marrakchi, F., Hameed, B. H., and Hummadi, E. H. (2020). Mesoporous biohybrid epichlorohydrin crosslinked chitosan/carbon–clay adsorbent for effective cationic and anionic dyes adsorption. Int. J. Biol. Macromol. 163, 1079–1086. doi:10.1016/j.ijbiomac. 2020.07.032 Marshall, W. E., Wartelle, L. H., Boler, D. E., Johns, M. M., and Toles, C. A. (1999). Enhanced metal adsorption by soybean hulls modified with citric acid. Bioresour. Technol. 69 (3), 263–268. doi:10.1016/S0960-8524(98)00185-0 Massimi, L., Giuliano, A., Astolfi, M. L., Congedo, R., Masotti, A., and Canepari, S. (2018). Efficiency evaluation of food waste materials for the removal of metals and Frontiers in Environmental Chemistry 14 frontiersin.org Nyairo et al. 10.3389/fenvc.2025.1526366metalloids from complex multi-element solutions. Materials 11, 334. doi:10.3390/ ma11030334 Mcafee, B., Gould, W., Nadeau, J., and Da Costa, A. (2001). BIOSORPTION OF METAL IONS USING CHITOSAN, CHITIN, AND BIOMASS OF RHIZOPUS ORYZAE. Sep. Sci. Technol. 36 (14), 3207–3222. doi:10.1081/SS-100107768 Medellín-Castillo, N. A., Cruz-Briano, S. A., Leyva-Ramos, R., Moreno-Piraján, J. C., Torres-Dosal, A., Giraldo-Gutiérrez, L., et al. (2020). Use of bone char prepared from an invasive species, pleco fish (Pterygoplichthys spp.), to remove fluoride and Cadmium(II) in water. J. Environ. Manag. 256, 109956. doi:10.1016/j.jenvman.2019. 109956 Mendoza-Castillo, D. I., Bonilla-Petriciolet, A., and Jáuregui-Rincón, J. (2015). On the importance of surface chemistry and composition of Bone char for the sorption of heavy metals from aqueous solution. Desalination Water Treat. 54 (6), 1651–1662. doi:10. 1080/19443994.2014.888684 Mohanty, S. R. (2015). Removal of hexavalent chromium using chitosan prepared from the shrimp and crab shells. Muhaemin, M. (2005). Chelating ability of crab shell particles and extracted acetamido groups (chitin and chitosan) from Portunus sp to lead (Pb2+). J. Coast. Dev. 9, 1–7. Mulyatun, M. (2018). Synthesis of low-cost adsorbent based on fly ash for heavy metal reduction of Cu and Cr in textile industrial liquid waste. J. Nat. Sci. Math. Res. 4 (2), 60–68. doi:10.21580/jnsmr.2018.4.2.11020 Ndekei, A., Gitita, M.-, Njomo, N., and Mbui, D. (2021). Synthesis and characterization of rice husk biochar and its application in the adsorption studies of lead and copper. Int. Res. J. Pure Appl. Chem., 36–50. doi:10.9734/irjpac/2021/ v22i430402 Neolaka, Y. A. B., Riwu, A. A. P., Aigbe, U. O., Ukhurebor, K. E., Onyancha, R. B., Darmokoesoemo, H., et al. (2023). Potential of activated carbon from various sources as a low-cost adsorbent to remove heavy metals and synthetic dyes. Results Chem. 5, 100711. doi:10.1016/j.rechem.2022.100711 Nhapi, I., Banadda, N., Murenzi, R., Sekomo, C., and Wali, U. (2011). Removal of heavy metals from industrial wastewater using rice husks. Open Environ. Eng. J. 4, 170–180. doi:10.2174/1874829501104010170 Nigri, E. M., Bhatnagar, A., and Rocha, S. D. F. (2017). Thermal regeneration process of bone char used in the fluoride removal from aqueous solution. J. Clean. Prod. 142, 3558–3570. doi:10.1016/j.jclepro.2016.10.112 Nyairo, W. N., Eker, Y. R., Kowenje, C., Zor, E., Bingol, H., Tor, A., et al. (2017). Efficient removal of lead(II) ions from aqueous solutions using methyl-β-cyclodextrin modified graphene oxide. Water, Air, and Soil Pollut. 228 (11), 406. doi:10.1007/s11270- 017-3589-9 Ogata, F., Kangawa, M., Iwata, Y., Ueda, A., Tanaka, Y., and Kawasaki, N. (2014). A study on the adsorption of heavy metals by using raw wheat bran bioadsorbent in aqueous solution phase. Chem. Pharm. Bull. 62 (3), 247–253. doi:10.1248/cpb.c13- 00701 Ogata, F., Kangawa, M., Tominaga, H., Tanaka, Y., Ueda, A., Iwata, Y., et al. (2013). Study of adsorption mechanism of heavy metals onto waste biomass wheat bran. J. Oleo Sci. 62 (11), 949–953. doi:10.5650/jos.62.949 Okoro, H. K., Alao, S. M., Pandey, S., Jimoh, I., Basheeru, K. A., Caliphs, Z., et al. (2022). Recent potential application of rice husk as an eco-friendly adsorbent for removal of heavy metals. Appl. Water Sci. 12 (12), 259. doi:10.1007/s13201-022- 01778-1 Ooishi, K., Ogino, K., Nishioka, H., and Muramatsu, Y. (2011). “Characterization and cadmium ion-removing property of adsorbents synthesized from inorganic wastes,” in IOP conference series: materials science and engineering. IOP Publishing.162020 Osman, A. I., Blewitt, J., Abu-Dahrieh, J. K., Farrell, C., Al-Muhtaseb, A. H., Harrison, J., et al. (2019). Production and characterisation of activated carbon and carbon nanotubes from potato peel waste and their application in heavy metal removal. Environ. Sci. Pollut. Res. 26 (36), 37228–37241. doi:10.1007/s11356-019-06594-w Piccirillo, C. (2023). Preparation, characterisation and applications of bone char, a food waste-derived sustainable material: a review. J. Environ. Manag. 339, 117896. doi:10.1016/j.jenvman.2023.117896 Piccirillo, C., Moreira, I. S., Novais, R. M., Fernandes, A. J. S., Pullar, R. C., and Castro, P. M. L. (2017). Biphasic apatite-carbon materials derived from pyrolysed fish bones for effective adsorption of persistent pollutants and heavy metals. J. Environ. Chem. Eng. 5 (5), 4884–4894. doi:10.1016/j.jece.2017.09.010 Popuri, S. R., Vijaya, Y., Boddu, V. M., and Abburi, K. (2009). Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. Bioresour. Technol. 100 (1), 194–199. doi:10.1016/j.biortech.2008.05.041 Praipipat, P., Ngamsurach, P., and Roopkhan, N. (2023). Zeolite A powder and beads from sugarcane bagasse fly ash modified with iron(III) oxide-hydroxide for lead adsorption. Sci. Rep. 13 (1), 1873. doi:10.1038/s41598-023-29055-4 Radomski, P., Piątkowski, M., Bogdał, D., and Jarosiński, A. (2014). The use of chitosan and its modified derivatives to remove trace amounts of heavy metals from industrial wastewater. Chemik 68, 39–46. Ráheľ, J., Procházka, V., Zahoran, M., and Erben, D. (2008). Removal of copper metal ions from aqueous solutions by plasma made chitosan filter. Chem. Listy 102, s1432–s1435. Rahman, A. (2024). Promising and environmentally friendly removal of copper, zinc, cadmium, and lead from wastewater using modified shrimp-based chitosan. Water 16 (1), 184. doi:10.3390/w16010184 Rahman, A., Haque, M. A., Ghosh, S., Shinu, P., Attimarad, M., and Kobayashi, G. (2023). Modified shrimp-based chitosan as an emerging adsorbent removing heavy metals chromium, nickel, arsenic, and cobalt from polluted water. Sustainability 15 (3), 2431. doi:10.3390/su15032431 Rahman, A., Seloma, A. S., and Ismail, I. I. (2020). Adsorption study of cadmium (II) and lead (II) on rice husk. Egypt. Acad. J. Biol. Sci. F. Toxicol. and Pest Control 12, 1–8. doi:10.21608/eajbsf.2020.105964 Ranjbar, N., Hashemi, S., Ramavandi, B., and Ravanipour, M. (2018). Chromium(VI) removal by bone char–ZnO composite: parameters optimization by response surface methodology and modeling. Environ. Prog. and Sustain. Energy 37 (5), 1684–1695. doi:10.1002/ep.12854 Rojas, G., Silva, J., Flores, J. A., Rodriguez, A., Ly, M., and Maldonado, H. (2005). Adsorption of chromium onto cross-linked chitosan. Sep. Purif. Technol. 44 (1), 31–36. doi:10.1016/j.seppur.2004.11.013 Rojas-Mayorga, C., Mendoza-Castillo, D., Bonilla-Petriciolet, A., and SilvestreAlbero, J. (2016). Tailoring the adsorption behavior of bone char for heavy metal removal from aqueous solution. Adsorpt. Sci. and Technol. 34 (6), 368–387. doi:10.1177/ 0263617416658891 Rojas-Mayorga, C. K., Bonilla-Petriciolet, A., Aguayo-Villarreal, I. A., HernándezMontoya, V., Moreno-Virgen, M. R., Tovar-Gómez, R., et al. (2013). Optimization of pyrolysis conditions and adsorption properties of bone char for fluoride removal from water. J. Anal. Appl. Pyrolysis 104, 10–18. doi:10.1016/j.jaap.2013.09.018 Rojas-Mayorga, C. K., Bonilla-Petriciolet, A., Silvestre-Albero, J., Aguayo-Villarreal, I. A., and Mendoza-Castillo, D. I. (2015). Physico-chemical characterization of metaldoped bone chars and their adsorption behavior for water defluoridation. Appl. Surf. Sci. 355, 748–760. doi:10.1016/j.apsusc.2015.07.163 Salihi, I. U., Kutty, S. R. M., Isa, M. H., Aminu, N., and Ezerie, H. (2014). Microwave incinerated sugarcane bagasse ash (MISCBA) as a low cost adsorbent for the removal of zinc in aqueous solution. 1, 281–290. doi:10.2495/ESUS140241 Samra, S. E., Jeragh, B., EL-Nokrashy, A. M., and EL-Asmy, A. A. (2014). Biosorption of Pb2+ from natural water using date pits: a green chemistry approach. Mod. Chem. Appl. 2, 1–8. Sánchez-Ponce, L., Díaz-de-Alba, M., Casanueva-Marenco, M. J., Gestoso-Rojas, J., Ortega-Iguña, M., Galindo-Riaño, M. D., et al. (2022). Potential use of low-cost agrifood waste as biosorbents for the removal of Cd(II), Co(II), Ni(II) and Pb(II) from aqueous solutions. Separations 9 (10), 309. doi:10.3390/separations9100309 Sen, T. K. (2023). Agricultural solid wastes based adsorbent materials in the remediation of heavy metal ions from water and wastewater by adsorption: a review. Molecules 28, 5575. doi:10.3390/molecules28145575 Shafiq, M., Alazba, A., and Amin, M. (2018). Removal of heavy metals from wastewater using date palm as a biosorbent: a comparative review. Sains Malays. 47, 35–49. doi:10.17576/jsm-2018-4701-05 Shah, B., Mistry, C., and Shah, A. (2013). Seizure modeling of Pb(II) and Cd(II) from aqueous solution by chemically modified sugarcane bagasse fly ash: isotherms, kinetics, and column study. Environ. Sci. Pollut. Res. 20 (4), 2193–2209. doi:10.1007/s11356-012- 1029-3 Shen, G., Li, Z., Hong, T., Ru, X., Wang, K., Gu, Y., et al. (2023). The status of the global food waste mitigation policies: experience and inspiration for China. Environ. Dev. Sustain. 26 (4), 8329–8357. doi:10.1007/s10668-023-03132-0 Singh, S., Chaudhary, I. J., and Kumar, P. (2019). Utilization of low-cost agricultural waste for removal of toxic metals from environment: a review. Int. J. Sci. Res. Biol. Sci. 6, 56–61. doi:10.26438/ijsrbs/v6i4.5661 Sobhanardakani, S., Zandipak, R., Parvizimosaed, H., Javanshir Khoei, A., Moslemi, M., Tahergorabi, M., et al. (2014). Efficiency of chitosan for the removal of Pb (II), Fe (II) and Cu (II) ions from aqueous solutions. Iran. J. Toxicol. 8, 1145–1151. Sofiane, B., and Sofia, K. S. (2015). Biosorption of heavy metals by chitin and the chitosan. Der Pharma Chem. 7, 54–63. Sud, D., Mahajan, G., and Kaur, M. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – a review. Bioresour. Technol. 99 (14), 6017–6027. doi:10.1016/j.biortech.2007.11.064 Sulyman, M., Namiesnik, J., and Gierak, A. (2017). Low-cost adsorbents derived from agricultural by-products/wastes for enhancing contaminant uptakes from wastewater: a review. Pol. J. Environ. Stud. 26, 479–510. doi:10.15244/pjoes/66769 Tang, Y.-T. (2020). “Accounting for the environmental impact of food waste on water resources and climate change,” in Food industry wastes (Elsevier), 305–329. doi:10.1016/ B978-0-12-817121-9.00014-0 Thompson, M. O., and Kearns, J. P. (2021). Modeling and experimental approaches for determining fluoride diffusion kinetics in bone char sorbent and prediction of Frontiers in Environmental Chemistry 15 frontiersin.org Nyairo et al. 10.3389/fenvc.2025.1526366packed-bed groundwater defluoridator performance. Water Res. X 12, 100108. doi:10. 1016/j.wroa.2021.100108 Tien, D. T. (2018). EXPERIMENTAL RESULTS OF ADSORPTION OF Ni (II) FROM WASTEWATER USING COFFEE HUSK BASED ACTIVATED CARBON. Vietnam J. Sci. Technol. 56 (2C), 126–132. doi:10.15625/2525-2518/56/2C/13039 Tonini, D., Albizzati, P. F., and Astrup, T. F. (2018). Environmental impacts of food waste: learnings and challenges from a case study on UK. Waste Manag. 76, 744–766. doi:10.1016/j.wasman.2018.03.032 Unagolla, J. M., and Adikary, S. U. (2015). Adsorption characteristics of cadmium and lead heavy metals into locally synthesized Chitosan Biopolymer. Trop. Agric. Res. 26 (2), 395. doi:10.4038/tar.v26i2.8102 Vardhan, K. H., Kumar, P. S., and Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives. J. Mol. Liq. 290, 111197. doi:10.1016/j.molliq.2019.111197 Wilson, J. A., Pulford, I. D., and Thomas, S. (2003). Sorption of Cu and Zn by bone charcoal. Environ. Geochem. Health 25 (1), 51–56. doi:10.1023/A:1021288529358 Xie, S. (2024). Biosorption of heavy metal ions from contaminated wastewater: an eco-friendly approach. Green Chem. Lett. Rev. 17 (1), 2357213. doi:10.1080/17518253. 2024.2357213 Xie, W., Wang, Q., Yao, J., Ma, H., Ohsumi, Y., and Ogawa, H. I. (2004). Study on advanced treatment of secondary effluent using fixed-bed filled with bone char. Water, Air, and Soil Pollut. 159 (1), 313–324. doi:10.1023/B:WATE.0000049181.63852.98 Yan, Z., Haijia, S., and Tianwei, T. (2007). Adsorption behaviors of the aminated chitosan adsorbent. Korean J. Chem. Eng. 24 (6), 1047–1052. doi:10.1007/s11814-007- 0119-2 Yanaka, A., Shibata, K., Matsumoto, N., and Yoshida, H. (2021). STUDY ON ADSORPTION OF HEAVY METALS BY RICE HUSK AND EXTRACTION OF HEAVY METALS ADSORBED IN RICE HUSK. GEOMATE J. 20, 28–33. doi:10.21660/ 2021.79.6221 Yogeshwaran, V., and Priya, A. K. (2021). Experimental studies on the removal of heavy metal ion concentration using sugarcane bagasse in batch adsorption process. Desalination Water Treat. 224, 256–272. doi:10.5004/dwt.2021.27160 Zhang, X., Wu, S., Liu, Y., Wang, Z., Zhang, H., and Xiao, R. (2023). Removal of Cr(VI) from aqueous solution by Rice-husk-based activated carbon prepared by Dualmode heating method. Carbon Resour. Convers. 6 (2), 76–84. doi:10.1016/j.crcon.2023. 01.003 Zheng, L., Dang, Z., Yi, X., and Zhang, H. (2010). Equilibrium and kinetic studies of adsorption of Cd (II) from aqueous solution using modified corn stalk. J. Hazard. Mater. 176, 650–656. doi:10.1016/j.jhazmat.2009.11.081 en_US
dc.identifier.uri http://erepository.kafuco.ac.ke/123456789/275
dc.description.abstract here has been an increase in the production of food waste materials worldwide due to rapid population growth. The ineffective and sometimes unscientific and ad hoc disposal of these food waste materials has led to environmental pollution. Studies have reported the occurrence of heavy metals in water resources posesserious health threats to the environment and human health. Heavy metals are documented to be recalcitrant to conventional water treatment facilities since they are non-biodegradable. The use of food waste-based adsorbents provides an alternative solution for the adsorption of heavy metals in water resources, with concomitant benefit of valorization of otherwise waste materials. Therefore, this study examined the applications of food waste-based adsorbents for the removal of heavy metal ions. The study adopted a literature-based approach which involved reviewing published papers from selected science databases. The results indicate that these bioadsorbents have great removal efficiencies for different heavy metals with, rice husks and sugarcane bagasse demonstrating special sorption properties, especially for chromium and lead metal ions, respectively. The adsorption data were mostly best described by the Langmuir and Freundlich isotherm models, suggesting a monolayer coverage with similar sites and a heterogeneous surface, respectively. Further, the kinetic studies indicated that the adsorption processes largely followed a pseudo secondorder model, showing chemisorption-mediated rate-limiting steps. However, regardless of these encouraging results attained, the use of food waste-based adsorbents has limitations such as variation in the composition and the structure. This leads to inconsistencies in adsorption efficiencies, regenerations and reuse, and reduced removal capacities. There is also the possibility of leaching of heavy metals from the adsorbents which may in-turn cause secondary pollution. Sustainability investigations such as life cycle assessment, cost-benefit analysis, pilot-scale studies and optimization studies present areas for future research. en_US
dc.language.iso en_US en_US
dc.subject food wastes, heavy metals, adsorption, wastewater, waste management en_US
dc.title Adsorption of heavy metals onto food wastes: a review en_US
dc.type Other en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Erepository


Browse

My Account