Kaimosi Friends University Repository

Unary Adsorption of Phthalates from Wastewater onto Water Hyacinth Biochar: Parameters, Drivers and Mechanism

Show simple item record

dc.contributor.author Ogora, Elkanah N.
dc.contributor.author Getenga, Zachary M.
dc.contributor.author Gichumbi, Joel M.
dc.contributor.author Shikuku, Victor O.
dc.date.accessioned 2025-07-07T08:26:32Z
dc.date.available 2025-07-07T08:26:32Z
dc.date.issued 2025
dc.identifier.citation 1. Jackson J, Sutton R. Sources of Endocrine-Disrupting Chemicals in Urban Wastewater, Oakland, CA. Sci Total Environ. 2008;405(1–3):153–160. https://doi.org/10.1016/j.scitotenv.2008.06.033. 2. Iñigo-Nuñez S, Herreros MA, Encinas T, Gonzalez-Bulnes A. Estimated Daily Intake of Pesticides and Xenoestrogenic Exposure by Fruit Consumption in the Female Population from a Mediterranean Country (Spain). Food Control. 2010;21(4):471–477. https://doi.org/10.1016/j. foodcont.2009.07.009. 3. Annamalai J, Namasivayam V. Endocrine Disrupting Chemicals in the Atmosphere: Their Effects on Humans and Wildlife. Environ Int. 2015;76:78–97. https://doi.org/10.1016/j.envint.2014.12.006. 4. Ngeno E, Ongulu R, Orata F, Matovu H, Shikuku V, Onchiri R, Mayaka A, Majanga E, Getenga Z, Gichumbi J, et al. Endocrine Disrupting Chemicals in Wastewater Treatment Plants in Kenya, East Africa: Concentrations, Removal Efficiency, Mass Loading Rates and Ecological Impacts. Environ Res. 2023;237:117076. https://doi.org/10.1016/j.envres.2023.117076. 5. Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr Rev. 2009;30(4):293–342. https://doi.org/10.1210/er.2009-0002. 6. Shikuku VO, Ngeno EC, Njewa JB, Ssebugere P. Pharmaceutical and Personal Care Products (PPCPs) and per- and Polyfluoroalkyl Substances (PFAS) in East African Water Resources: Progress, Challenges, and Future. Basic Sci. Sustain. Dev. 2023;2:21–38. https://doi.org/10.1515/9783111071206-002. 7. Casajuana N, Lacorte S. Presence and Release of Phthalic Esters and Other Endocrine Disrupting Compounds in Drinking Water. Chromatographia. 2003;57(9–10):649–655. https://doi.org/10.1007/BF02491744. 8. Esfandian H, Yousefi E, Sharifzadeh BM. Removal of Dimethyl Phthalate from Aqueous Solution by Synthetic Modified Nano Zeolite Using Cu2O Nanoparticles. Int. J. Eng. Trans. A Basics. 2016,29(9):1198–1207. https:// doi.org/10.5829/idosi.ije.2016.29.09c.03. 9. Tapia-Orozco N, Ibarra-Cabrera R, Tecante A, Gimeno M, Parra R, GarciaArrazola R. Removal Strategies for Endocrine Disrupting Chemicals Using Cellulose-Based Materials as Adsorbents: A Review. J Environ Chem Eng. 2016;4(3):3122–3142. https://doi.org/10.1016/j.jece.2016.06.025. 10. Fang ZQ, Huang HJ. Adsorption of Di-n-Butyl Phthalate onto NutshellBased Activated Carbon. Equilibrium, Kinetics and Thermodynamics. Adsorpt Sci Technol. 2009;27(7):685–700. https://doi.org/10.1260/0263- 6174.27.7.685. 11. Xu Z, Zhang W, Pan B, Lv L, Jiang Z. Treatment of Aqueous Diethyl Phthalate by Adsorption Using a Functional Polymer Resin. Environ Technol. 2011;32(2):145–153. https://doi.org/10.1080/09593330.2010.4908 54. 12. Den W, Liu H-C, Chan S-F, Kin KT, Huang C. Adsorption of Phthalate Esters with Multiwalled Carbon Nanotubes and Its Application. Adsorption of phthalate esters with multiwalled carbon nanotubes and its applications. J Environ Econ Manage. 2006;16(4):275–282. 13. Chen C, Chen C, Chung Y. Removal of phthalate esters by α-cyclodextrinlinked chitosan bead. Bioresour Technol. 2007;98(13):2578–2583. https:// doi.org/10.1016/j.biortech.2006.09.009. 14. Chan HW, Lau TC, Ang PO, Wu M, Wong PK. Biosorption of Di(2- Ethylhexyl)Phthalate by Seaweed Biomass. J Appl Phycol. 2004;16(4):263– 274. https://doi.org/10.1023/B:JAPH.0000047778.93467.af. 15. Ngeno EC, Mbuci KE, Necibi MC, Shikuku VO, Olisah C, Ongulu R, Matovu H, Ssebugere P, Abushaban A, Sillanpää M. Sustainable ReUtilization of Waste Materials as Adsorbents for Water and Wastewater Treatment in Africa: Recent Studies, Research Gaps, and Way Forward for Emerging Economies. Environ Adv. 2022;9(August):100282. https://doi. org/10.1016/j.envadv.2022.100282. 16. Wang H, Hua H, Zhang L, Wen S. On the Resistance-Harary Index of Graphs Given Cut Edges. J Chem. 2017;2017:1–7. https://doi. org/10.1155/2017/3531746. 17. Orata F, Ngeno EC, Baraza LD, Shikuku VO, Kimosop SJ. Adsorption of Caffeine and Ciprofloxacin onto Pyrolitically Derived Water Hyacinth Biochar: Isothermal, Kinetic and Thermodynamic Studies. J Chem Chem Eng. 2016;10(4). https://doi.org/10.17265/1934-7375/2016.04.006. 18. Hashem MA, Hasan M, Momen MA, Payel S, Nur-A-Tomal MS. Water Hyacinth Biochar for Trivalent Chromium Adsorption from Tannery Wastewater. Environ. Sustain. Indic. 2020;5:100022. https://doi. org/10.1016/j.indic.2020.100022. 19. Liu Y, Gao Z, Ji X, Wang Y, Zhang Y, Sun H, Li W, Wang L, Duan J. Efficient Adsorption of Tebuconazole in Aqueous Solution by Calcium Modified Water Hyacinth-Based Biochar: Adsorption Kinetics, Mechanism, and Feasibility. Molecules. 2023;28(8):3478. https://doi.org/10.3390/ molecules28083478. 20. Bian P, Shao Q. Performance and Mechanism of Functionalized Water Hyacinth Biochar for Adsorption and Removal of Benzotriazole and Lead in Water. Int J Mol Sci. 2023;24(10):8936. https://doi.org/10.3390/ ijms24108936. 21. Onchiri R, Mayaka A, Majanga A, Ongulu R, Orata F, Getenga Z, Gichumbi J, Ogora E. Phthalate Levels in Wastewater Treatment Plants of Lake Victoria Basin. Appl. Ecol. Environ. Sci. 2025;9(12):1011–1017. https://doi. org/10.12691/aees-9-12-4. 22. Cousins IT, Mackay D, Parkerton TF. Physical-Chemical Properties and Evaluative Fate Modelling of Phthalate Esters. Berlin Heidelberg: SpringerVerlag; 2003. pp. 57–84. https://doi.org/10.1007/b11463. 23. Shikuku VO, Jemutai-Kimosop S. Efficient Removal of Sulfamethoxazole onto Sugarcane Bagasse-Derived Biochar: Two and Three-Parameter Isotherms, Kinetics and Thermodynamics. S Afr J Chem. 2020;73(1):111– 119. https://doi.org/10.17159/0379-4350/2020/v73a16. 24. Ho YS, McKay G. Sorption of Dye from Aqueous Solution by Peat. Chem Eng J. 1998;70(2):115–124. https://doi.org/10.1016/S0923-0467(98)00076- 1. 25. Ho Y, Ofomaja A. Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber. J Hazard Mater. 2006;129(1– 3):137–142. https://doi.org/10.1016/j.jhazmat.2005.08.020. 26. Weber WJ Jr, Rumer RR Jr. Intraparticle Transport of Sulfonated Alkylbenzenes in a Porous Solid: Diffusion with Nonlinear Adsorption. Water Resour Res. 1965;1(3):361–373. https://doi.org/10.1029/ WR001i003p00361. 27. Langmuir I. THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. J Am Chem Soc. 1918;40(9):1361–1403. https://doi.org/10.1021/ja02242a004. 28. Hall KR, Eagleton LC, Acrivos A, Vermeulen T. Pore- and Solid-Diffusion Kinetics in Fixed-Bed Adsorption under Constant-Pattern Conditions. Ind Eng Chem Fundam. 1966;5(2):212–223. https://doi.org/10.1021/ i160018a011. 29. Freundlich H. Über Die Adsorption in Lösungen. Z Phys Chem. 1907;57U(1):385–470. https://doi.org/10.1515/zpch-1907-5723. 30. Cerofolini GF. A Model Which Allows for the Freundlich and the DubininRadushkevich Adsorption Isotherms. Surf Sci. 1975;51(1):333–335. https://doi.org/10.1016/0039-6028(75)90260-5. 31. Galhetas M, Mestre AS, Pinto ML, Gulyurtlu I, Lopes H, Carvalho AP. Carbon-Based Materials Prepared from Pine Gasification Residues forReseaRch aRticle Ogora, Getenga, Gichumbi, Shikuku 9 S. Afr. J. Chem., 2025, 79, 1–9 https://journals.co.za/content/journal/chem/ Acetaminophen Adsorption. Chem Eng J. 2014;240:344–351. https://doi. org/10.1016/j.cej.2013.11.067. 32. Mboka JM, Tamaguelon HD, Shikuku V, Tome S, Deugueu VF, Othman H, Janiak C, Dika MM, Etoh MA, Dina DJD. Novel Superadsorbent from Pozzolan-Charcoal Based Geopolymer Composite for the Efficient Removal of Aqueous Crystal Violet. Water Air Soil Pollut. 2024;235(7):430. https://doi.org/10.1007/s11270-024-07257-4. 33. Ngeno E, Ongulu R, Shikuku V, Ssentongo D, Otieno B, Ssebugere P, Orata F. Response Surface Methodology Directed Modeling of the Biosorption of Progesterone onto Acid Activated Moringa Oleifera Seed Biomass: parameters and Mechanisms. Chemosphere. 2024;360:142457. https://doi. org/10.1016/j.chemosphere.2024.142457. 34. Xu Y, Liu Y, Liu S, Tan X, Zeng G, Zeng W, Ding Y, Cao W, Zheng B. Enhanced Adsorption of Methylene Blue by Citric Acid Modification of Biochar Derived from Water Hyacinth (Eichornia Crassipes). Environ Sci Pollut Res Int. 2016;23(23):23606–23618. https://doi.org/10.1007/s11356- 016-7572-6. 35. Jedynak K, Wideł D, Oszczudłowski J. Removal of Selected Phthalates from Aqueous Solution by Mesoporous-Ordered Carbon Adsorbent. Adsorpt Sci Technol. 2017;35(7–8):744–750. https://doi. org/10.1177/0263617417708675. 36. Achieng G, Shikuku V. Adsorption of Copper Ions from Water onto Fish Scales Derived Biochar: isothermal Perspectives. J Mater Environ Sci. 2020;2020(11):1816–1827. 37. Krupadam RJ, Sridevi P, Sakunthala S. Removal of Endocrine Disrupting Chemicals from Contaminated Industrial Groundwater Using Chitin as a Biosorbent. J Chem Technol Biotechnol. 2011;86(3):367–374. https://doi. org/10.1002/jctb.2525. 38. Dada AO, Olalekan AP, Olatunya AM, Dada O. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk. IOSR J Appl Chem. 2012;3(1):38–45. https://doi.org/10.9790/5736-0313845. 39. Jemutai-Kimosop S, Okello VA, Shikuku VO, Orata F, Getenga ZM. Synthesis of Mesoporous Akaganeite Functionalized Maize Cob Biochar for Adsorptive Abatement of Carbamazepine: Kinetics, Isotherms, and Thermodynamics. Clean Mater. 2022;5(June):100104. https://doi. org/10.1016/j.clema.2022.100104. 40. Dzoujo HT, Shikuku VO, Tome S, Akiri S, Kengne NM, Abdpour S, Janiak C, Etoh MA, Dina D. Synthesis of Pozzolan and Sugarcane Bagasse Derived Geopolymer-Biochar Composites for Methylene Blue Sequestration from Aqueous Medium. J Environ Manage. 2022;318(March):115533. https://doi.org/10.1016/j.jenvman.2022.115533. 41. Abdoul ASI, Islam MS, Chen Y, Weng L, Sun Y, Chang X, Zhou B, Ma J, Li Y. Competitive adsorption of Dibutyl phthalate (DBP) and Di(2-ethylhexyl) phthalate (DEHP) onto fresh and oxidized corncob biochar. Chemosphere. 2021;280:130639. https://doi.org/10.1016/j.chemosphere.2021.130639. 42. Falahrodbari S. Adsorption of Benzene Butyl Phthalate with Mullti-walled Carbon Nanotubes/Ag nanoparticles and its Applications. Orient J Chem 2017;33(2):330241. http://dx.doi.org/10.13005/ojc/330241. 43. Liu Q, Ye J, Han Y, Wang P, Fei Z, Chen X, Zhang Z, Tang J, Cui M, Qiao X. Defective UiO-67 for enhanced adsorption of dimethyl phthalate and phthalic acid. J. Mol. Liq. 2020;321:114477. https://doi.org/10.1016/j. molliq.2020.114477. en_US
dc.identifier.uri http://erepository.kafuco.ac.ke/123456789/274
dc.description.abstract In this study, water hyacinth root-derived biochar (WHB) was prepared as a low-cost adsorbent for the removal of three phthalates, namely, benzyl butyl phthalate (BBP), dimethyl phthalate (DMP) and bis(2-ethylhexyl) phthalate (BEHP) from single solute aqueous solutions. The equilibrium data were best described by the adsorption isotherm models in the order Freundlich>Langmuir>Dubinin-RadushkevichKaganer (D-R-K) isotherms. The maximum monolayer adsorption capacity (Qo) was 1.83, 1.77, and 1.62 mg/g for DMP, BBP, and BEHP, respectively. The adsorption of the phthalates was diminished by increased molecular weight and molar volume of the molecules but compensated by their hydrophobicity. The kinetic data were best described by the pseudo-second order (PSO) model and pore diffusion was not the sole operative rate-determining step. The calculated thermodynamic functions, changes in Gibb’s free energy (ΔG<0), enthalpy (ΔH<0), and entropy (ΔS<0) demonstrate the adsorption of DMP, BBP, and BEHP onto WHB is energetically favorable, exothermic, spontaneous and of a physical type controlled by hydrophobic interactions. The comparative adsorption capacities imply that WHB would sequester phthalates regardless of their physicochemical profiles. en_US
dc.language.iso en_US en_US
dc.publisher South African Journal of Chemistry en_US
dc.subject Phthalates, Water hyacinth biochar, adsorption, physicochemical properties en_US
dc.title Unary Adsorption of Phthalates from Wastewater onto Water Hyacinth Biochar: Parameters, Drivers and Mechanism en_US
dc.type Preprint en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Erepository


Browse

My Account