dc.identifier.citation |
[1] Mouni L, Djoudi M, Didier R, Abdelkrim B. Batch studies for the investigation of the sorption of the heavy metals Pb2+ and Zn2+ onto Amizour soil (Algeria). Geoderma 2009;154(1–2):30–5. https://doi.org/10.1016/j.geoderma.2009.09.007. [2] Genchi G, Alessia C, Graziantonio L, Maria SS. Nickel: human health and environmental toxicology. Int J Environ Res Public Health 2020;17(679):1–21. [3] Lalhruaitluanga H, Jayaram K, Prasad MNV, Kumar KK. Lead(II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo)-A comparative study. J Hazard Mater 2010;175(1–3):311–8. doi: 10.1016/j.jhazmat.2009.10.005. 0 20 40 60 80 100 120 8 6 4 2 0 10 12 14 experimental pseudo-first order pseudo-second order Elovich qt (mg/g) time (min) Fig. 13. Adsorption kinetic fit for the removal of Ni2+ ions by CnZVI (C0 = 100mgL-1, pH= 6.0, m = 0.2 g, V = 100 mL). Table 3 Adsorption kinetic data for the removal of Ni2+ions by Arg and CnZVI. Adsorption kinetic model Arg CnZVI Qe,exp 8.361 14.250 Pseudo first-order Qe (mgg− 1) 10.066 13.131 K1 (min− 1) 0.178 0.255 R 2 0.988 0.951 Pseudo second-order Qe (mgg− 1) 10.752 13.950 K2 (gmg− 1min− 1) 0.027 0.032 R 2 0.986 0.984 Elovich kinetic model α (mgg− 1min− 1) 0.192 0.272 β(gmg− 1) 386.416 2280.524 R 2 0.962 0.996 Table 4 A comparison of Ni2+ adsorption capacity of Arg and CnZVI with other adsorbents. Adsorbents Qe (mg/g) Reference Rice husks 8.86 [51] Halzenut shell 10.10 [52] Fly ash 0.03 [53] Protonated rice bran 46.51 [54] Clinoptilolite 0.90 [55] Banana peel 6.80 [56] Row down seed 3.24 [57] Arg 10.85 This study CnZVI 14.38 This study Table 5 Result of Batch Test using CnZVI. Metals ions Ni2+ Cu2+ Zn2+ Hg2+ Pb2+ Cd2+ Qe (mg/g) 14.38 65.20 20.95 11.23 48.25 12.23 A. Tchakounte et al.Desalination and Water Treatment 320 (2024) 100771 11 [4] Sushil R, Manning B, Laurent C, Heechul C. Removal of Arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 2005;39(5): 1291–8. https://doi.org/10.1021/es048991u. [5] Elawwad A, Karam A, Zaher K. Using an algal photo-bioreactor as a polishing step for secondary treated wastewater. Pol J Environ Stud 2017;26(4). https://doi.org/ 10.15244/pjoes/68426). [6] Badawi AK, Hassan R, Farouk M, Bakhoum ES, Salama RS. Optimizing the coagulation/flocculation process for the treatment of slaughterhouse and meat processing wastewater: experimental studies and pilot-scale proposal. Int J Environ Sci Technol 2024:1–16. [7] Badawi AK, Salama RS, Mostafa MMM. Natural-based coagulants/flocculants as sustainable market-valued products for industrial wastewater treatment: a review of recent developments. RSC Adv 2023;13(28):19335–55. https://doi.org/ 10.1039/D3RA01999C. [8] Tarekegn MM, Andualem MH, Dekebo AH. Nano zero valent iron (NZVI) particles for the removal of heavy metals (Cd2+, Cu2+ and Pb2+) from aqueous solutions. RSC Adv 2021;11(2021):18539–51. https://doi.org/10.1039/d1ra01427g. [9] Okello VA, Masika OI, Shikuku VO. Reduction and degradation of paraoxon in water using zero-valent iron nanoparticles. Sustainability 2022;14(15). https://doi. org/10.3390/su14159451. [10] Armand TN, Poumve HZ, Kede CM, Dika JM. Calcareous-support nanoscale zerovalent iron: new findings on adsorption of Cr ( VI) in aqueous solution. J Appl Surf Interfaces 2019;6(1–3):9–17. https://doi.org/10.48442/IMIST.PRSM/jasi-v6i1- 3.17461. [11] Hoag EG, Collins JB, Holcomb JL, Hoag JR, Nadagouda N, Varma RS. Degradation of bromothymol blue by ‘Greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 2009;19:8671–7. https://doi.org/10.1039/ b909148c. [12] Li X, Zhao Y, Xi B, Mao X, Gong B, Li R, et al. Removal of nitrobenzene by immobilized nanoscale zero-valent iron: effect of clay support and efficiency optimization. Appl Surf Sci 2016. https://doi.org/10.1016/j.apsusc.2016.01.141. [13] Uddin MK. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 2017;308:438–62. https://doi.org/ 10.1016/j.cej.2016.09.029. [14] Kede CM, Etoh MA, Ndibewu PP, Ngomo HM, Ghogomu PM. Equilibria and kinetic studies on the adsorption of cadmium onto cameroonian wetland clays. Br J Appl Sci Technol 2014;4(7):1071–88. https://doi.org/10.9734/bjast/2014/4299. [15] Abbassi R, Kumar A, Kumar N, Huang S, Jaffe P. Modeling and optimization of dye removal using ‘Green’ Clay supported iron nano-particles. Ecol Eng 2013;61 (2013):366–70. https://doi.org/10.1016/j.ecoleng.2013.09.040. [16] Odler I. The BET-specific surface area of hydrated Portland cement and related materials. Cem Concr Res 2003;33(12):2049–56. https://doi.org/10.1016/S0008- 8846(03)00225-4. [17] Wibowo N, Setyadhi L, Wibowo D, Setiawan J, Ismadji S. Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: influence of surface chemistry on adsorption. J Hazard Mater 2007; 146(1-2):237–42. https://doi.org/10.1016/j.jhazmat.2006.12.011. [18] Zyoud AH, Zubi A, Zyoud SH, Hilal MH, Zyoud S, Qamhieh N, et al. Kaolinsupported ZnO nanoparticle catalysts in self-sensitized tetracycline photodegradation: Zero-point charge and pH effects. Appl Clay Sci 2019;182: 105294. https://doi.org/10.1016/j.clay.2019.105294. [19] Ehtisham M, Badawi AK, Khan AM, Khan RA, Ismail B. Exploring moisture adsorption on cobalt-doped ZnFe 2 O 4 for applications in atmospheric water harvesting. RSC Adv 2024;14(9):6165–77. https://doi.org/10.1039/d3ra08152d. [20] Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem 1999;34:451–65. https://doi.org/10.1021/acs.oprd.7b00090. [21] Ho Y. Review of second-order models for adsorption systems. J Hazard Mater 2006; 136(3):681–9. https://doi.org/10.1016/j.jhazmat.2005.12.043. [22] Elovich SYu, Larionov OG. Theory of adsorption from solutions of non-electrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form, (II) verification of the equation of adsorption isotherm from solution, Institute of Physical Chemistry. Acad Sci USSR 1962;2:298. 203. [23] Sidjou AS, Armand T, Tome S, Kede C, Dika MJ. Use of Rice Husk Ash as a Potent Adsorbent of Malachite Green: Kinetic and Equilibrium Studies 2022;4(1):55–63. https://doi.org/10.48402/IMIST.PRSM/jasab-v4i1.31846. [24] Lakhdhar I, Belosinschi D, Mangin P, Chabot B. Development of a bio-based sorbent media for the removal of nickel ions from aqueous solutions. J Environ Chem Eng 2016;4(3):3159–69. https://doi.org/10.1016/j.jece.2016.06.026. [25] Langmuir I. The constitution and fundamental properties of solids and liquids. Part II.-liquids. J Frankl Inst 1917;184(5):2221–95. https://doi.org/10.1016/s0016- 0032(17)90088-2. [26] Freundlich Herbert. Über die adsorption in Losungen. ¨ Z Fur Physlkalishe Chem 1907;57(4):385–470. https://doi.org/10.1515/zpch-1907-5723. [27] Dubinin MM. Generalization of the Theory of Volume Filling of Micropores to Nonhomogeneous Microporous Structures 1985;23(4):373–80. https://doi.org/ 10.1016/0008-6223(85)90029-6. [28] Shikuku VO, Mishra T. Adsorption isotherm modeling for methylene blue removal onto magnetic kaolinite clay: a comparison of two-parameter isotherms. Appl Water Sci 2021;11:103. https://doi.org/10.1007/s13201-021-01440-2. [29] Hern´ andez-montoya, P´ erez-cruz VMA, Mendoza-castillo DI, Moreno-virgen MR. Competitive adsorption of dyes and heavy metals on zeolitic structures. J Environ Manag 2013;116:213–21. https://doi.org/10.1016/j.jenvman.2012.12.010. [30] Medhat A, El-Maghrabi HH, Abdelghany A, Abdel Menem NM, Raynaud P, Moustafa YM, et al. Efficiently activated carbons from corn cob for methylene blue adsorption. Appl Surf Sci Adv 2021;3:100037. https://doi.org/10.1016/j. apsadv.2020.100037. [31] Nada AA, Bekheet MF, Roualdes S, Gurlo A, Ayral A. Functionalization of MCM-41 with titanium oxynitride deposited via PECVD for enhanced removal of methylene blue. J Mol Liq 2019;274:505–15. https://doi.org/10.1016/j.molliq.2018.10.154. [32] Kakali G, Perraki T, Tsivilis S, Badogiannis E. Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Appl Clay Sci 2001;20(1-2):73–80. https://doi.org/10.1016/S0169-1317(01)00040-0. [33] Hilal N, Al-Zoubi H, Mohammad A, Darwish N. Nanofiltration of highly concentrated salt solutions up to seawater salinity. Desalination 2005;184(1-3): 315–26. https://doi.org/10.1016/j.desal.2005.02.062. [34] Kenne Diffo BB, Elimbi A, Cyr M, Dika Manga J, Tchakoute KH. Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers. J Asian Ceram Soc 2015;3(1):130–8. https://doi.org/10.1016/j.jascer.2014.12.003. [35] Rehan M, Nada AA, Khattab TA, Abdelwahed NA, El-Kheir AAA. Development of multifunctional polyacrylonitrile/silver nanocomposite films: antimicrobial activity, catalytic activity, electrical conductivity, UV protection and SERS-active sensor. J Mater Res Technol 2020;9(4):9380–94. https://doi.org/10.1016/j. jmrt.2020.05.079. [36] Salama RS, Gouda MS, Aboud MFA, Alshorifi FT, El-Hallag AA, Badawi AK. Synthesis and characterization of magnesium ferrite-activated carbon composites derived from orange peels for enhanced supercapacitor performance. Sci Rep 2024; 14(1):8223. https://doi.org/10.1038/s41598-024-54942-9. [37] Abi Younes P, Sayegh S, Nada AA, Weber M, Iatsunskyi I, Coy E, et al. Elaboration of porous alumina nanofibers by electrospinning and molecular layer deposition for organic pollutant removal. Colloids Surf A Physicochem Eng Asp 2021;628: 127274. https://doi.org/10.1016/j.colsurfa.2021.127274. [38] Saikia B, Parthasarathy G. Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India. J Mod Phys 2010;1(4):206–10. https://doi.org/10.4236/jmp.2010.14031. [39] Missota Priso Dickson B, Dika Manga J, Pougnong TE, et al. Effects of kinetic parameters on initial setting time, microstructure and mechanical strength of volcanic ash-based phosphate inorganic polymers. Silicon 2022;14:3693–705. https://doi.org/10.1007/s12633-021-01140-1. [40] Pearlin Kiruba U, Senthil Kumar P, Sangita Gayatri K, Shahul Hameed S, Sindhuja M, Prabhakaran C. Study of adsorption kinetic, mechanism, isotherm, thermodynamic, and design models for Cu(II) ions on sulfuric acid-modified Eucalyptus seeds: temperature effect. Desalin Water Treat 2015;56(11):2948–65. https://doi.org/10.1080/19443994.2014.966279. [41] Tchakout´ e HK, Rüscher CH, Kong S, Kamseu E, Leonelli C. Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: a comparative study. Constr Build Mater 2016;114:276–89. https://doi.org/10.1016/j.conbuildmat.2016.03.184. [42] Bich C, Ambroise J, P´ era J. Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Appl Clay Sci 2009;44(3-4):194–200. https:// doi.org/10.1016/j.clay.2009.01.014. [43] Kaze RC, Beleuk a` Moungam LM, Cannio M, Rosa R, Kamseu E, Melo UC, et al. Microstructure and engineering properties of Fe2O3(FeO)-Al2O3-SiO2 based geopolymer composites. J Clean Prod 2018;199:849–59. https://doi.org/10.1016/ j.jclepro.2018.07.171. [44] Jemutai-Kimosop S, Orata F, Shikuku VO, Okello VA, Getenga ZM. Insights on adsorption of carbamazepine onto iron oxide modified diatomaceous earth: Kinetics, isotherms, thermodynamics, and mechanisms. Environ Res 2019;180: 108898. https://doi.org/10.1016/j.envres.2019.108898. [45] Luttah I, Onunga DO, Shikuku VO, Otieno B, Kowenje CO. Removal of endosulfan from water by municipal waste incineration fly ash-based geopolymers: adsorption kinetics, isotherms, and thermodynamics. Front Environ Chem 2023;4:1164372. https://doi.org/10.3389/fenvc.2023.1164372. [46] Mishra T, Tiwari S. Studies on sorption properties of zeolite derived from Indian fly ash. J Hazard Mater 2006;137(1):299–303. https://doi.org/10.1016/j. jhazmat.2006.02.004. [47] ZHOU YF, HAYNES RJ. Sorption of heavy metals by inorganic and organic components of solid wastes: significance to use of wastes as low-cost adsorbents and immobilizing agents. Crit Rev Environ Sci Technol 2010;40(11):909–77. https://doi.org/10.1080/10643380802586857. [48] Das R, Mukherjee A, Sinha I, et al. Synthesis of potential bio-adsorbent from Indian Neem leaves (Azadirachta indica) and its optimization for malachite green dye removal from industrial wastes using response surface methodology: kinetics, isotherms and thermodynamic studies. Appl Water Sci 2020;10:117. https://doi. org/10.1007/s13201-020-01184-5. [49] Aliabadi M, Irani M, Ismaeili J, Piri H, Parnian MJ. Electrospun nanofiber membrane of PEO/Chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution. Chem Eng J 2013;220:237–43. https://doi.org/ 10.1016/j.cej.2013.01.021. [50] Wu F, Tseng R, Juang R. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem Eng J 2009;150(2-3):366–73. https://doi.org/10.1016/j.cej.2009.01.014. [51] Bansal M, Singh D, Garg VK, Rose P. Use of agricultural waste for the removal of nickel ions from aqueous solutions: equilibrium and kinetics studies. Int J Civ Environ Eng 2009;3(3):174–80. https://doi.org/10.5281/zenodo.1075328. [52] Demirbas¸ E, Kobya M, Oncel ¨ S, S¸encan S. Removal of Ni(II) from aqueous solution by adsorption onto hazelnut shell activated carbon: equilibrium studies. Bioresour Technol 2002;84(3):291–3. https://doi.org/10.1016/S0960-8524(02)00052-4. [53] Rao M, Parwate A, Bhole A. Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash.Desalination and Water Treatment 320 (2024) 100771 12 [54] Zafar MN, Nadeem R, Hanif MA. Biosorption of nickel from protonated rice bran. J Hazard Mater 2007;143(1-2):478–85. https://doi.org/10.1016/j. jhazmat.2006.09.055. [55] Ouki S, Kavannagh M. Treatment of metals-contaminated wastewaters by use of natural zeolites. Water Sci Technol 1998;39(10-11):115–22. https://doi.org/ 10.1016/S0273-1223(99)00260-7. [56] Annadural G, Juang RS, Lee DJ. Adsorption of heavy metals from water using banana and orange peels. Water Sci Technol 2003;47(1):185–90. [57] El-Sadaawy M, Abdelwahab O. Adsorptive removal of nickel from aqueous solutions by activated carbons from doum seed (Hyphaenethebaica) coat. Alex Eng J 2014;53(2):399–408. https://doi.org/10.1016/j.aej.2014.03.014. A |
en_US |