Kaimosi Friends University Repository

Detection of Plasmodium Sporozoites and Blood-Meal Source in a Population of Anopheles Coustani Senso Lato in Kakamega County, Western Kenya

Show simple item record

dc.contributor.author Busula, Annette O
dc.contributor.author Ayuya, Stephen
dc.contributor.author Kitungulu, Nicholas
dc.contributor.author Kipchoo, Mukabane
dc.contributor.author Webale, Mark Kilongosi
dc.contributor.author Omukunda, Elizabeth
dc.date.accessioned 2022-10-11T10:18:24Z
dc.date.available 2022-10-11T10:18:24Z
dc.date.issued 2022-01
dc.identifier.citation i. Hay SI, Cox J, Rogers DJ, Randolph SE, Stern DI, Shanks GD, et al. Climate change and the resurgence of malaria in the East African highlands. Nature. 2002;415(6874):905–9. ii. National Malaria Control Programme (NMCP), Kenya National Bureau of Statistics (KNBS) and I, International. Kenya Malaria Indicator Survey 2015. Nairobi, Kenya, and Rockville, Maryland, USA: NMCP, KNBS, and ICF International: 2016. www.ijird.com January, 2022 Vol 11Issue1 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT DOI No. : 10.24940/ijird/2022/v11/i1/JAN22031 Page 62 iii. Afrane YA, Bonizzoni M, Yan G. Secondary malaria vectors of sub-Saharan Africa: threat to malaria elimination on the continent. Curr Top Malar. 2016;473–90. iv. Temu EA, Minjas JN, Coetzee M, Hunt RH, Shiff CJ. The role of four anopheline species (Diptera: Culicidae) in malaria transmission in coastal Tanzania. Trans R Soc Trop Med Hyg. 1998;92(2):152–8. v. Bekele D, Belyhun Y, Petros B, Deressa W. Assessment of the effect of insecticide-treated nets and indoor residual spraying for malaria control in three rural kebeles of Adami Tulu District, South Central Ethiopia. Malar J. 2012;11(1):127. vi. Kirby MJ, Ameh D, Bottomley C, Green C, Jawara M, Milligan PJ, et al. Effect of two different house screening interventions on exposure to malaria vectors and on anaemia in children in The Gambia: a randomised controlled trial. The Lancet. 2009;374(9694):998–1009. vii. Atieli HE, Zhou G, Afrane Y, Lee M-C, Mwanzo I, Githeko AK, et al. Insecticide-treated net (ITN) ownership, usage, and malaria transmission in the highlands of western Kenya. Parasit Vectors. 2011;4(1):113. viii. Orsborne J, Furuya-Kanamori L, Jeffries CL, Kristan M, Mohammed AR, Afrane YA, et al. Investigating the bloodhost plasticity and dispersal of Anopheles coluzzii using a novel field-based methodology. Parasit Vectors. 2019;12(1):143. ix. Orsborne J, Mohammed AR, Jeffries CL, Kristan M, Afrane YA, Walker T, et al. evidence of extrinsic factors dominating intrinsic blood host preferences of major African malaria vectors. Sci Rep. 2020;10(1):1–9. x. Mwangangi JM, Muturi EJ, Muriu SM, Nzovu J, Midega JT, Mbogo C. The role of Anopheles arabiensis and Anopheles coustani in indoor and outdoor malaria transmission in Taveta District, Kenya. Parasit Vectors. 2013;6(1):114. xi. Derua YA, Alifrangis M, Hosea KM, Meyrowitsch DW, Magesa SM, Pedersen EM, et al. Change in composition of the Anopheles gambiae complex and its possible implications for the transmission of malaria and lymphatic filariasis in north-eastern Tanzania. Malar J. 2012;11(1):1–9. xii. Meyrowitsch DW, Pedersen EM, Alifrangis M, Scheike TH, Malecela MN, Magesa SM, et al. Is the current decline in malaria burden in sub-Saharan Africa due to a decrease in vector population? Malar J. 2011;10(1):188. xiii. Mwangangi JM, Mbogo CM, Orindi BO, Muturi EJ, Midega JT, Nzovu J, et al. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years. Malar J. 2013;12(1):13. xiv. Alles HK, Mendis KN, Carter R. Malaria mortality rates in South Asia and in Africa: implications for malaria control. Parasitol Today. 1998;14(9):369–75. xv. Greenwood B, Marsh K, Snow R. Why do some African children develop severe malaria? Parasitol Today. 1991;7(10):277–81. xvi. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526(7572):207. xvii. Chanda E, Kamuliwo M, Steketee RW, Macdonald MB, Babaniyi O, Mukonka VM. An overview of the malaria control programme in Zambia. ISRN Prev Med. 2012;2013. xviii. Eisele TP, Steketee RW. African malaria control programs deliver ITNs and achieve what the clinical trials predicted. PLoS Med. 2011;8(9):e1001088. xix. Ndenga B, Githeko A, Omukunda E, Munyekenye G, Atieli H, Wamai P, et al. Population dynamics of malaria vectors in western Kenya highlands. J Med Entomol. 2014;43(2):200–6. xx. Omukunda E, Githeko A, Ndong’a MF, Mushinzimana E, Atieli H, Wamae P. Malaria vector population dynamics in highland and lowland regions of western Kenya. J Vector Borne Dis. 2013;50(2):85. xxi. Degefa T, Yewhalaw D, Zhou G, Lee M, Atieli H, Githeko AK, et al. Indoor and outdoor malaria vector surveillance in western Kenya: implications for better understanding of residual transmission. Malar J. 2017;16(1):443. xxii. Sougoufara S, Ottih EC, Tripet F. The need for new vector control approaches targeting outdoor biting Anopheline malaria vector communities. Parasit Vectors. 2020;13(1):1–15. xxiii. Whitty CJ, Allan R, Wiseman V, Ochola S, Nakyanzi-Mugisha MV, Vonhm B, et al. Averting a malaria disaster in Africa: where does the buck stop? Bull World Health Organ. 2004;82:381–4. xxiv. Paine MJ, Brooke B. Insecticide resistance and its impact on vector control. In: Advances in Insect Control and Resistance Management. Springer; 2016. p. 287–312. xxv. Consortium I of IR. Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: trends in pyrethroid resistance during a WHO-coordinated multi-country prospective study. Parasit Vectors. 2018;11(1):550. xxvi. Riveron JM, Chiumia M, Menze BD, Barnes KG, Irving H, Ibrahim SS, et al. Rise of multiple insecticide resistance in Anopheles funestus in Malawi: a major concern for malaria vector control. Malar J. 2015;14(1):344. xxvii. Knox TB, Juma EO, Ochomo EO, Jamet HP, Ndungo L, Chege P, et al. An online tool for mapping insecticide resistance in major Anopheles vectors of human malaria parasites and review of resistance status for the Afrotropical region. Parasit Vectors. 2014;7(1):76. xxviii. Zhou G, Lee M, Atieli HE, Githure JI, Githeko AK, Kazura JW, et al. Adaptive interventions for optimizing malaria control: an implementation study protocol for a block-cluster randomized, sequential multiple assignment trial. Trials. 2020;21(1):1–15. xxix. Mendis C, Jacobsen JL, Gamage-Mendis A, Bule E, Dgedge M, Thompson R, et al. Anopheles arabiensis and An. funestus are equally important vectors of malaria in Matola coastal suburb of Maputo, southern Mozambique. Med Vet Entomol. 2000;14(2):171–80. www.ijird.com January, 2022 Vol 11Issue1 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT DOI No. : 10.24940/ijird/2022/v11/i1/JAN22031 Page 63 xxx. Ndenga BA, Simbauni JA, Mbugi JP, Githeko AK, Fillinger U. Productivity of malaria vectors from different habitat types in the western Kenya highlands. PLoS One. 2011;6(4):e19473. xxxi. Munga S, Minakawa N, Zhou G, Mushinzimana E, Barrack O-OJ, Githeko AK, et al. Association between land cover and habitat productivity of malaria vectors in western Kenyan highlands. Am J Trop Med Hyg. 2006;74(1):69– 75. xxxii. Ogola E, Villinger J, Mabuka D, Omondi D, Orindi B, Mutunga J, et al. Composition of Anopheles mosquitoes, their blood-meal hosts, and Plasmodium falciparum infection rates in three islands with disparate bed net coverage in Lake Victoria, Kenya. Malar J. 2017;16(1):1–12. xxxiii. Adugna T, Yewhelew D, Getu E. Bloodmeal sources and feeding behavior of anopheline mosquitoes in Bure district, northwestern Ethiopia. Parasit Vectors. 2021;14(1):1–12. xxxiv. Takahashi MQ, Rothman JM, Raubenheimer D, Cords M. Dietary generalists and nutritional specialists: Feeding strategies of adult female blue monkeys (Cercopithecusmitis) in the Kakamega Forest, Kenya. Am J Primatol. 2019;81(7):e23016. xxxv. Organization WH. Manual on practical entomology in malaria. World Health Organization; 1995. xxxvi. Gillies MT, Coetzee M. A supplement to the Anophelinae of Africa South of the Sahara. PublAfrInst Med Res. 1987;55:1–143. xxxvii. Wirtz RA, Zavala F, Charoenvit Y, Campbell GH, Burkot TR, Schneider I, et al. Comparative testing of monoclonal antibodies against Plasmodium falciparum sporozoites for ELISA development. Bull World Health Organ. 1987;65(1):39. xxxviii. Beier JC, Killeen GF, Githure JI. entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa. Am J Trop Med Hyg. 1999;61(1):109–13. xxxix. Ogola E, Villinger J, Mabuka D, Omondi D, Orindi B, Mutunga J, et al. Composition of Anopheles mosquitoes, their blood-meal hosts, and Plasmodium falciparum infection rates in three islands with disparate bed net coverage in Lake Victoria, Kenya. Malar J. 2017;16(1):360. xl. Musa AA, Muturi MW, Musyoki AM, Ouso DO, Oundo JW, Makhulu EE, et al. Arboviruses and blood meal sources in zoophilic mosquitoes at human-wildlife interfaces in Kenya. Vector-Borne Zoonotic Dis. 2020;20(6):444–53. xli. WHO, Global malaria report 2019. xlii. Nepomichene TNJJ, Tata E, Boyer S. Malaria case in Madagascar, probable implication of a new vector, Anopheles coustani. Malar J [Internet]. 2015 Dec [cited 2019 Jul 29];14(1). Available from: http://www.malariajournal.com/content/14/1/475 xliii. Muturi EJ, Shililu J, Jacob B, Gu W, Githure J, Novak R. Mosquito species diversity and abundance in relation to land use in a ricelandagroecosystem in Mwea, Kenya. J Vector Ecol. 2006;31(1):129–37. xliv. Ndenga BA, Mulaya NL, Musaki SK, Shiroko JN, Dongus S, Fillinger U. Malaria vectors and their blood-meal sources in an area of high bed net ownership in the western Kenya highlands. Malar J. 2016;15(1):76. xlv. Muriu SM, Muturi EJ, Shililu JI, Mbogo CM, Mwangangi JM, Jacob BG, et al. Host choice and multiple blood feeding behaviour of malaria vectors and other anophelines in Mwea rice scheme, Kenya. Malar J. 2008;7(1):43. xlvi. Fornadel CM, Norris LC, Franco V, Norris DE. Unexpected anthropophily in the potential secondary malaria vectors Anopheles coustanisl and Anopheles squamosus in Macha, Zambia. Vector-Borne Zoonotic Dis. 2011;11(8):1173–9. xlvii. Muturi EJ, Mwangangi J, Shililu J, Muriu S, Jacob B, Kabiru E, et al. Mosquito species succession and physicochemical factors affecting their abundance in rice fields in Mwea, Kenya. J Med Entomol. 2007;44(2):336–44. Appendix Malaria Vect en_US
dc.identifier.issn 2278 – 0211
dc.identifier.uri http://erepository.kafuco.ac.ke/123456789/134
dc.description.abstract Re-emerging of malaria vectors in the highlands of Western Kenya pose a challenge to malaria eradication efforts. Anopheles coustanis.l is a sub-Saharan mosquito species implicated in transmission of malaria in many parts of Africa as a secondary vector. It is zoo-anthropophilic species that has been assumed to be of negligible importance which may not be the case. This study therefore aimed at getting the malaria vectorial system of the study area, has tried to determine the relative abundance of the vectors and a new outdoor malaria vector. Methods A cross sectional study was carried out in April to June, 2020 in Eluche location, Mumias East sub-County, Kakamega County, Kenya. Pyrethrum spray collections (PSC) and Centers for Disease Control (CDC) and prevention light traps were used for sampling mosquitoes. Mosquitoes were collected both indoors; between 0700h and 1100h using PSC and outdoors between 1800h and 0700h using CDC light traps. All mosquitoes were identified morphologically and female Anopheles’ heads and thorax were analyzed using Polymerase Chain Reaction (PCR) for Plasmodium sporozoite detection and blood-meal source identification. Results A total of 376 female Anopheles mosquitoes were collected composed of: An. coustanis.l, 42.55%; An. funestus, 27.66%; An. maculipulpis, 25.00%; An. arabiensis, 4.26% and An. gambiaes.s, 0.53%. Malaria sporozoites were detected in only An. coustani (1.06%). Conclusion There is a possibility of Anopheles coustani mosquito involvement in malaria transmission in Mumias east, Kakamega County. en_US
dc.language.iso en en_US
dc.publisher ijird en_US
dc.subject Anopheles coustani, malaria vectors, Plasmodium falciparum en_US
dc.title Detection of Plasmodium Sporozoites and Blood-Meal Source in a Population of Anopheles Coustani Senso Lato in Kakamega County, Western Kenya en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Erepository


Browse

My Account